The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 22 , ISSUE 1 ( January, 2021 ) > List of Articles

ORIGINAL RESEARCH

Comparative In Vitro Evaluation of WHO Periodontal Probe and #11/12 Dental Explorer for Subgingival Calculus Detection

Thomas E Rams, Marc P Manos

Keywords : Dental calculus, Diagnosis, In vitro, ODU 11/12 explorer, WHO probe

Citation Information : Rams TE, Manos MP. Comparative In Vitro Evaluation of WHO Periodontal Probe and #11/12 Dental Explorer for Subgingival Calculus Detection. J Contemp Dent Pract 2021; 22 (1):13-17.

DOI: 10.5005/jp-journals-10024-3033

License: CC BY-NC 4.0

Published Online: 19-04-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: The World Health Organization (WHO) periodontal probe is recommended for epidemiologic surveys and periodontal screening, but its ability to identify subgingival dental calculus (DC) relative to a #11/12 explorer is not known. This study compared in vitro the ability of the WHO probe and a #11/12 explorer to detect subgingival DC. Materials and methods: Three typodont models with randomly distributed artificial DC on mandibular molar and premolar root surfaces were assessed with a WHO periodontal probe and a #11/12 explorer by two periodontists. The diagnostic performance of the two instruments for subgingival DC detection was compared using 2 × 2 contingency table analysis. Results: A #11/12 explorer provided better reproducibility, a higher level of sensitivity, higher positive predictive values, higher negative predictive values, and greater overall accuracy (diagnostic effectiveness) (76.9% vs. 68.5% for the first periodontist; 87.0% vs. 75.0% for the second periodontist) for detection of subgingival DC than the WHO probe. Conclusion: The in vitro diagnostic performance of a #11/12 explorer was superior to the WHO periodontal probe for identification of subgingival DC. Clinical significance: A #11/12 explorer, rather than the WHO probe, is recommended for identification of subgingival DC.


PDF Share
  1. Akcali A, Lang NP. Dental calculus: the calcified biofilm and its role in disease development. Periodontology 2000 2018;76(1):109–115. DOI: 10.1111/prd.12151.
  2. Meissner G, Kocher T. Calculus-detection technologies and their clinical application. Periodontology 2000 2011;55(1):189–204. DOI: 10.1111/j.1600-0757.2010.00379.x.
  3. Huennekens SC, Daniel SJ. Task analysis of the ODU 11/12 explorer. J Dent Hyg 1992;66(1):24–26.
  4. Kamath DG, Umesh Nayak S. Detection, removal and prevention of calculus: literature review. Saudi Dent J 2014;26(1):7–13. DOI: 10.1016/j.sdentj.2013.12.003.
  5. Rams TE, Lopes JA, Crowley MJ, et al. Comparative in vitro performance of an ODU 11/12 dental explorer and differential reflectometry for detection of subgingival dental calculus. J Oral Biol (Northborough) 2017;4(2):5. Available at: http://www.avensonline.org/wp-content/uploads/JOBY-2377-987X-04-0030.pdf.
  6. Ainamo J, Barmes D, Beagrie G, et al. Development of the World Health Organization (WHO) community periodontal index of treatment needs (CPITN). Int Dent J 1982;32(3):281–291.
  7. Petersen PE, Ogawa H. The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontology 2000 2012;60(1):15–39. DOI: 10.1111/j.1600-0757.2011.00425.x.
  8. Landry RG, Jean M. Periodontal screening and recording (PSR) index: precursors, utility and limitations in a clinical setting. Int Dent J 2002;52(1):35–40. DOI: 10.1111/j.1875-595x.2002.tb00595.x.
  9. British Society of Periodontology. The Good Practitioner's Guide to Periodontology. Selby, United Kingdom: British Society of Periodontology; 2016, p. 52. Available at: http://www.bsperio.org.uk/publications/good_practitioners_guide_2016.pdf.
  10. Clerehugh V, Abdeia R, Hull PS. The effect of subgingival calculus on the validity of clinical probing measurements. J Dent 1996;24(5):329–333. DOI: 10.1016/0300-5712(95)00095-x.
  11. Shaikh SA. Measures derived from a 2 x 2 table for an accuracy of a diagnostic test. J Biom Biostat 2011;2(5):4. Available at: https://www.omicsonline.org/measures-derived-from-a-2-x-2-table-for-an-accuracy-of-a-diagnostic-test-2155-6180.1000128.php?aid=3010.
  12. Hunt RJ. Percent agreement, Pearson's correlation, and kappa as measures of inter-examiner reliability. J Dent Res 1986;65(2):128–130. DOI: 10.1177/00220345860650020701.
  13. Sherman PR, Hutchens LH Jr, Jewson LG, et al. The effectiveness of subgingival scaling and root planning. I. Clinical detection of residual calculus. J Periodontol 1990;61(1):3–8. DOI: 10.1902/jop.1990.61.1.3.
  14. Pippin DJ, Feil P. Interrater agreement on subgingival calculus detection following scaling. J Dent Educ 1992;56(5):322–326.
  15. Buchanan SA, Jenderseck RS, Granet MA, et al. Radiographic detection of dental calculus. J Periodontol 1987;58(11):747–751. DOI: 10.1902/jop.1987.58.11.747.
  16. Hyer JC, Deas DE, Palaiologou AA, et al. Accuracy of dental calculus detection using digital radiography and image manipulation. J Periodontol 2020;19:0669. DOI: 10.1002/JPER.19-0669.
  17. Partido BB, Webb CA, Carr MP. Comparison of calculus detection among dental hygienists using an explorer and ultrasonic insert. Int J Dent Hyg 2019;17(2):192–198. DOI: 10.1111/idh.12388.
  18. Rams TE, Alwaqyan AY. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces. Saudi Dent J 2017;29(4):171–178. DOI: 10.1016/j.sdentj.2017.08.001.
  19. Folwaczny M, Heym R, Mehl A, et al. Subgingival calculus detection with fluorescence induced by 655 nm InGaAsP diode laser radiation. J Periodontol 2002;73(6):597–601. DOI: 10.1902/jop.2002.73.6.597.
  20. Krause F, Braun A, Frentzen M. The possibility of detecting subgingival calculus by laser-fluorescence in vitro. Lasers Med Sci 2003;18(1):32–35. DOI: 10.1007/s10103-002-0241-7.
  21. Kurihara E, Koseki T, Gohara K, et al. Detection of subgingival calculus and dentine caries by laser fluorescence. J Periodontal Res 2004;39(1):59–65. DOI: 10.1111/j.1600-0765.2004.00712.x.
  22. Laky M, Laky B, Arslan M, et al. Effectiveness of a 655-nm InGaAsP diode-laser to detect subgingival calculus in patients with periodontal disease. J Periodontol 2020;Aug 12. [Epub ahead of print]. DOI: 10.1002/JPER.19-0663.
  23. Meissner G, Oehme B, Strackeljan J, et al. Clinical subgingival calculus detection with a smart ultrasonic device: a pilot study. J Clin Periodontol 2008;35(2):126–132. DOI: 10.1111/j.1600-051X.2007.01177.x.
  24. Caffesse RG, Sweeney PL, Smith BA. Scaling and root planing with and without periodontal flap surgery. J Clin Periodontol 1986;13(3):205–210. DOI: 10.1111/j.1600-051x.1986.tb01461.x.
  25. Osborn JB, Lenton PA, Lunos SA, et al. Endoscopic vs. tactile evaluation of subgingival calculus. J Dent Hyg 2014;88(4):229–236.
  26. Kuang Y, Hu B, Chen J, et al. Effects of periodontal endoscopy on the treatment of periodontitis: a systematic review and meta-analysis. J Am Dent Assoc 2017;148(10):750–759. DOI: 10.1016/j.adaj.2017.05.011.
  27. Wilson TG Jr, Carnio J, Schenk R, et al. Absence of histologic signs of chronic inflammation following closed subgingival scaling and root planing using the dental endoscope: human biopsies - a pilot study. J Periodontol 2008;79(11):2036–2041. DOI: 10.1902/jop.2008.080190.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.