The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 22 , ISSUE 1 ( January, 2021 ) > List of Articles

ORIGINAL RESEARCH

Efficiency of Using Different Greater Taper Gutta-Percha Cones in Continuous Warm Vertical Condensation: An Ex Vivo Study

Reem Barakat, Rahaf Almohareb, Mamata Hebbal, Ghada Alaskar, Lama Alghufaily, Nouf AlFarraj, Alia Albaz

Keywords : Apical seal, Ex vivo, Gutta-percha cones, Obturation, ProTaper next, Sealer, Taper, Voids, Warm vertical condensation

Citation Information : Barakat R, Almohareb R, Hebbal M, Alaskar G, Alghufaily L, AlFarraj N, Albaz A. Efficiency of Using Different Greater Taper Gutta-Percha Cones in Continuous Warm Vertical Condensation: An Ex Vivo Study. J Contemp Dent Pract 2021; 22 (1):56-61.

DOI: 10.5005/jp-journals-10024-3035

License: CC BY-NC 4.0

Published Online: 19-04-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: The aim of this ex vivo randomized study is to evaluate the efficiency of gutta-percha cones that match a nickel–titanium instrumentation system and nonmatching greater taper cones, when used with continuous warm vertical condensation technique. Material and methods: Thirty-six straight canals were prepared using ProTaper Next files, and the apical third was obturated using either ProTaperNext cones (group A), ISO uniform greater taper cones (group B), or nonstandardized cones (group C). Cone adaptation time was quantified by the number of required modifications. Micro-computed tomography was used to measure voids and sealer percentage. Results: There was no significant difference between the groups regarding void volume (p = 0.666), percentage (p = 0.379), and the number of modifications (p = 0.757). Sealer percentage, however, was significantly lower in group B when compared to group A (p = 0.0194). Conclusion: In straight canals, matching gutta-percha cones were not associated with significantly better obturation or saving time to fit the cone. Clinical significance: Using gutta-percha cones that do not match a nickel–titanium instrumentation system to obturate the straight canals with continuous warm vertical condensation technique is as efficient as using matching cones in terms of obturation quality and ease of cone fit.


PDF Share
  1. Hammad M, Qualtrough A, Silikas N. Evaluation of root canal obturation: a three-dimensional in vitro study. J Endod 2009;35(4):541–544. DOI: 10.1016/j.joen.2008.12.021.
  2. Schilder H, Goodman A, Aldrich W. The thermomechanical properties of gutta-percha. Part V. Volume changes in bulk gutta-percha as a function of temperature and its relationship to molecular phase transformation. Oral Surg Oral Med Oral Pathol 1985;59(3):285–296. DOI: 10.1016/0030-4220(85)90169-0.
  3. Silver GK, Love RM, Purton DG. Comparison of two vertical condensation obturation techniques: Touch'n heat modified and System B. Int Endod J 1999;32(4):287–295. DOI: 10.1046/j.1365-2591.1999.00215.x.
  4. Keleş A, Alcin H, Kamalak A, et al. Micro-CT evaluation of root filling quality in oval-shaped canals. Int Endod J 2014;47(12):1177–1184. DOI: 10.1111/iej.12269.
  5. Olczak K, Klimek L, Pawlicka H. Ex vivo area-metric analysis of root canal obturation using cold and warm gutta-percha. Adv Mater Sci Eng 2016;2016:6308362. DOI: 10.1155/2016/6308362.
  6. van der Borden WG, Wu M-K, Wesselink PR. Percentages of gutta-percha-filled canal area observed after increased apical enlargement. J Endod 2010;36(1):139–142. DOI: 10.1016/j.joen.2009.08.011.
  7. Lu Q, Xing W, Peiling W. Effects of three root canal filling methods on lateral root canal filling in first mandibular premolars: an in vitro study. Chin J Conserv Dent 2012;(22):379–381. Available from: https://en.cnki.com.cn/Article_en/CJFDTotal-YTYS201207005.htm.
  8. Bal AS, Hicks ML, Barnett F. Comparison of laterally condensed .06 and .02 tapered gutta-percha and sealer in vitro. J Endod 2001;27(12):786–788. DOI: 10.1097/00004770-200112000-00019.
  9. Gambarini G, Plotino G, Grande NM, et al. Matching gutta-percha cones to NiTi rotary instrument preparations. Roots 2016;2:26–28. Available from: https://www.semanticscholar.org/paper/Matching-gutta-percha-cones-to-NiTi-rotary-Gambarini-Plotino/4a1fea581ffaf2ec58283d67bbea75f2621f8194.
  10. Wu H, Peng C, Bai Y, et al. Shaping ability of ProTaper universal, waveone and protaper next in simulated L-shaped and S-shaped root canals. BMC Oral Health 2015;15:27. DOI: 10.1186/s12903-015-0012-z.
  11. Khasnis SA, Kar PP, Kamal A, et al. Rotary science and its impact on instrument separation: a focused review. J Conserv Dent 2018;21(2):116–124. DOI: 10.4103/JCD.JCD_240_17.
  12. Romania C, Beltes P, Boutsioukis C, et al. Ex-vivo area-metric analysis of root canal obturation using gutta-percha cones of different taper. Int Endod J 2009;42(6):491–498. DOI: 10.1111/j.1365-2591.2008.01533.x.
  13. Souq. Dental: online dental supplies store in Saudi Arabia. 2020. Available from: https://souq.dental/. Accessed 8 August 2020.
  14. Schäfer E, Köster M, Bürklein S. Percentage of gutta-percha-filled areas in canals instrumented with nickel-titanium systems and obturated with matching single cones. J Endod 2013;39(7):924–928. DOI: 10.1016/j.joen.2013.04.001.
  15. Capar ID, Ertas H, Ok E, et al. Comparison of single cone obturation performance of different novel nickel-titanium rotary systems. Acta Odontol Scand 2014;72(7):537–542. DOI: 10.3109/00016357.2013.876554.
  16. Schäfer E, Nelius B, Bürklein S. A comparative evaluation of gutta-percha filled areas in curved root canals obturated with different techniques. Clin Oral Investig 2012;16(1):225–230. DOI: 10.1007/s00784-011-0509-z.
  17. Banton C. Efficiency DefiNiTion. Investopedia. 2020. Available from: https://www.investopedia.com/terms/e/efficiency.asp. Accessed 8 August 2020.
  18. Kabini SN, Moodley D, Parker ME, et al. An in-vitro comparative micro computed evaluation of three obturation systems. S Afr Dent J 2018;73:298–302. Available from: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0011-85162018000400010&lng=en.
  19. Alshehri M, Alamri HM, Alshwaimi E, et al. Micro-computed tomographic assessment of quality of obturation in the apical third with continuous wave vertical compaction and single match taper sized cone obturation techniques. Scanning 2016;38(4):352–356. DOI: 10.1002/sca.21277.
  20. Zogheib C, Hanna M, Pasqualini D, et al. Quantitative volumetric analysis of cross-linked gutta-percha obturators. Ann Stomatol (Roma) 2016;7(3):46–51. DOI: 10.11138/ads/2016.7.3.046.
  21. Başer Can ED, Keleş A, Aslan B. Micro-CT evaluation of the quality of root fillings when using three root filling systems. Int Endod J 2017;50(5):499–505. Doi: 10.1111/iej.12644.
  22. Angerame D, De Biasi M, Pecci R, et al. Analysis of single point and continuous wave of condensation root filling techniques by micro-computed tomography. Ann Ist Super Sanita 2012;48(1):35–41. DOI: 10.4415/ANN_12_01_06.
  23. Somma F, Cretella G, Carotenuto M, et al. Quality of thermoplasticized and single point root fillings assessed by micro-computed tomography. Int Endod J 2011;44(4):362–369. DOI: 10.1111/j.1365-2591.2010.01840.x.
  24. Iglecias EF, Freire LG, de Miranda Candeiro GT, et al. Presence of voids after continuous wave of condensation and single-cone obturation in mandibular molars: a micro-computed tomography analysis. J Endod 2017;43(4):638–642. DOI: 10.1016/j.joen.2016.11.027.
  25. Saunders WP, Saunders EM. Coronal leakage as a cause of failure in root-canal therapy: a review. Endod Dent Traumatol 1994;10(3):105–108. DOI: 10.1111/j.1600-9657.1994.tb00533.x.
  26. Kazemi RB, Safavi KE, Spångberg LS. Dimensional changes of endodontic sealers. Oral Surg Oral Med Oral Pathol 1993;76(6):766–771. DOI: 10.1016/0030-4220(93)90050-e.
  27. Jung M, Lommel D, Klimek J. The imaging of root canal obturation using micro-CT. Int Endod J 2005;38(9):617–626. DOI: 10.1111/j.1365-2591.2005.00990.x.
  28. Kierklo A, Tabor Z, Petryniak R, et al. Application of microcomputed tomography for quantitative analysis of dental root canal obturations. Postepy Hig Med Dosw (Online) 2014;68:310–315. DOI: 10.5604/17322693.1095271.
  29. Rodrigues A, Bonetti-Filho I, Faria G, et al. Percentage of gutta-percha in mesial canals of mandibular molars obturated by lateral compaction or single cone techniques. Microsc Res Tech 2012;75(9):1229–1232. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jemt.22053.
  30. Lee E-A, Kim S-K. Obturation efficiency of non-standardized gutta-percha cone in curved root canals prepared with 0.06 taper nickel-titanium instruments. J Korean Acad Conserv Dent 2005;30(2):79–84. DOI: 10.5395/JKACD.2005.30.2.079.
  31. Alemam AAH, Dummer PMH, Farnell DJJ. A comparative study of protaper universal and protaper next used by undergraduate students to prepare root canals. J Endod 2017;43(8):1364–1369. DOI: 10.1016/j.joen.2017.03.038.
  32. Chesler MB, Tordik PA, Imamura GM, et al. Intramanufacturer diameter and taper variability of rotary instruments and their corresponding gutta-percha cones. J Endod 2013;39(4):538–541. DOI: 10.1016/j.joen.2012.12.029.
  33. Bueno J, de Melo TAF, Kunert GG. Evaluation of the tip of standardized D0 gutta-percha cones of four rotary systems, by means of an endodontic ruler. Rev Gaúcha Odontol 2017;65(4):299–302. DOI: 10.1590/1981-863720170002000023168.
  34. Mirmohammadi H, Sitarz M, Shemesh H. Intra-manufacture diameter variability of rotary files and their corresponding gutta-percha cones using laser scan micrometre. Iran Endod J 2018;13(2):159–162. DOI: 10.22037/iej.v13i2.14710.
  35. Haupt F, Seidel M, Rizk M, et al. Diameter and taper variability of single-file instrumentation systems and their corresponding gutta-percha cones. J Endod 2018;44(9):1436–1441. DOI: 10.1016/j.joen.2018.06.005.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.