The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 22 , ISSUE 4 ( April, 2021 ) > List of Articles


Incidence of Different Types of Intracanal Fracture of Nickel–Titanium Rotary Instruments: A Systematic Review

Maya Feghali, Edit Xhajanka, Pamela Kassabian, Marco Seracchiani

Keywords : Flexural stress, Fracture, Instrument design, Rotary nickel–titanium instruments, Torsional stress

Citation Information :

DOI: 10.5005/jp-journals-10024-3015

License: CC BY-NC 4.0

Published Online: 00-04-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Aim: The aim of this systemic review is to investigate these parameters by analyzing the characteristics of fractured instruments to determine which is the most relevant mechanical stress that induces intracanal separation in vivo. Background: The fracture of nickel–titanium (Ni–Ti) instruments is a result of flexural fatigue and torsional fatigue. An electronic search was conducted in MEDLINE database, Web of Science, and Cochrane following preferred reporting items for systematic reviews and meta-analyses guidelines. Data were collected and the key features from the included studies were extracted. Overview quality assessment questionnaire scoring assessed the quality of the articles. A total of 12 articles were selected, where the lowest score was 13. Review results: Considering Ni–Ti rotary instruments, this overall evaluation comprehends 939 broken instruments with an incidence of fracture of 5%. Out of the 12 selected articles, 10 studies revealed that flexural failure was the predominant mode (range of 62–92%). It appears that motion plays an important role when it comes to mechanisms of fracture. The majority of defects found in hand-operated instruments were in the form of torsional failure. Although the major cause of separation of rotary instruments is flexural fatigue, smaller instruments show more torsional fracture than the larger instruments. The average fragment length was found to be 2.5 mm and 3.35 mm, respectively, for torsional failure and flexural failure. The risk of bias depends on fractographic analysis. Conclusion: Flexural fatigue is the predominant mode of fracture in rotary Ni–Ti instruments. The type of motion and size of the instrument seem to affect the mechanism of fracture. Fragment length may show a strong association with the type of fracture mechanism. Clinical significance: This systemic review found that flexural fatigue is the most relevant mechanical stress that induces intracanal separation in vivo. Moreover, in clinical practice, the fragment length might be an excellent indicator of the type of fracture.

  1. Crump MC, Natkin E. Relationship of broken root canal instruments to endodontic case prognosis: a clinical investigation. J Am Dent Assoc 1970;80:1341–1347. DOI: 10.14219/jada.archive.1970.0259.
  2. Panitvisai P, Parunnit P, Sathorn C, et al. Impact of a retained instrument on treatment outcome: a systematic review and metaanalysis. J Endod 2010;36:775–780. DOI: 10.1016/j.joen.2009.12.029.
  3. Sattapan B, Nervo GJ, Palamara JE, et al. Defects in rotary nickeltitanium files after clinical use. J Endod 2000;26:161–165. DOI: 10.1097/00004770-200003000-00008.
  4. Zelada G, Varela P, Martín B, et al. The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J Endod 2002;28:540–542. DOI: 10.1097/00004770- 200207000-00014.
  5. Haïkel Y, Serfaty R, Bateman G, et al. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod 1999;25:434–440. DOI: 10.1016/S0099-2399(99)80274-X.
  6. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod 2006;32:1031–1043. doi: 10.1016/j. joen.2006.06.008.
  7. Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network metaanalyses of health care interventions: checklist and explanations. Ann Intern Med 2015;162:777–784. DOI: 10.7326/M14-2385.
  8. Oxman AD, Guyatt GH. Validation of an index of the quality of review articles. J Clin Epidemiol 1991;44:1271–1278. DOI: 10.1016/0895- 4356(91)90160-b.
  9. Cheung GS, Peng B, Bian Z, et al. Defects in ProTaper S1 instruments after clinical use: fractographic examination. Int Endod J 2005;38:802–809. DOI: 10.1111/j.1365-2591.2005.01020.x.
  10. Cheung GS, Bian Z, Shen Y, et al. Comparison of defects in ProTaper hand-operated and engine-driven instruments after clinical use. Int Endod J 2006;40:169–178. DOI: 10.1111/j.1365-2591.2006.01200.x.
  11. Fernández-Pazos G, Martín-Biedma B, Varela-Patiño P, et al. Fracture and deformation of ProTaper next instruments after clinical use. J Clin Exp Dent 2018;10(11):e1091-5. DOI: 10.4317/jced.54910.
  12. Inan U, Gonulol N. Deformation and fracture of Mtwo rotary nickeltitanium instruments after clinical use. J Endod 2009;35:1396–1399. DOI: 10.1016/j.joen.2009.06.014.
  13. Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod 2004;30:722–725. DOI: 10.1097/01.DON.0000129963.42882.C9.
  14. Peng B, Shen Y, Cheung GS, et al. Defects in ProTaper S1 instruments after clinical use: longitudinal examination. Int Endod J 2005;38:550–557. DOI: 10.1111/j.1365-2591.2005.00991.x.
  15. Shen Y, Cheung GS, Bian Z, et al. Comparison of defects in ProFile and ProTaper systems after clinical use. J Endod 2006;32:61–65. DOI: 10.1016/j.joen.2005.10.017.
  16. Shen Y, Haapasalo M, Cheung GS, et al. Defects in nickel-titanium instruments after clinical use. Part 1: relationship between observed imperfections and factors leading to such defects in a cohort study. J Endod 2009;35:129–132. DOI: 10.1016/j.joen.2008.10.014.
  17. Shen Y, Cheung GS-P, Peng B, et al. Defects in nickel-titanium instruments after clinical use. Part 2: fractographic analysis of fractured surface in a cohort study. J Endod 2009;35:133–136. DOI: 10.1016/j.joen.2008.10.013.
  18. Shen Y, Coil JM, Haapasalo M. Defects in nickel-titanium instruments after clinical use. Part 3: a 4-year retrospective study from an undergraduate clinic. J Endod 2009:35;193–196. DOI: 10.1016/j. joen.2008.11.003.
  19. Shen Y, Winestock E, Cheung GS, et al. Defects in nickel-titanium instruments after clinical use. Part 4: an electropolished instrument. J Endod 2009;35:197–201. DOI: 10.1016/j.joen.2008.11.012.
  20. Shen SM, Deng M, Wang PP, et al. Deformation and fracture of K3 rotary nickel– titanium endodontic instruments after clinical use. Int Endod J 2015;49:1088–1094. DOI: 10.1111/iej.12561.
  21. Wei X, Ling J, Jiang J, et al. Modes of failure of ProTaper nickel-titanium rotary instruments after clinical use. J Endod. 2007;33:276–279. doi: 10.1016/j.joen.2006.10.012.
  22. Alapati SB, Brantley WA, Svec TA et al. SEM observations of nickeltitanium rotary endodontic instruments that fractured during clinical use. J Endod 2005;31:40–43. DOI: 10.1097/01.don.0000132301.87637.4a.
  23. Al-Fouzan KS. Incidence of rotary ProFile instrument fracture and the potential for bypassing in vivo. Int Endod J 2003;36:864–867. DOI: 10.1111/j.1365-2591.2003.00733.x.
  24. Alfouzan K, Jamleh A. Fracture of nickel titanium rotary instrument during root canal treatment and re-treatment: a 5-year retrospective study. Int Endod J 2018; 51:157–116. DOI: 10.1111/iej.12826.
  25. Arens FC, Hoen MM, Steiman HR, et al. Evaluation of single-use rotary nickel-titanium instruments. J Endod 2003;29:664-666. DOI: 10.1097/00004770-200310000-00013.
  26. Bueno CSP, de Oliveira DP, Pelegrine RA, et al. Fracture incidence of waveone and reciproc files during root canal preparation of up to 3 posterior teeth: a prospective clinical study. J Endod 2017;43:705-708. DOI: 10.1016/j.joen.2016.12.024.
  27. Caballero-Flores H, Nabeshima CK, Binotto E, et al. Fracture incidence of instruments from a single-file reciprocating system by students in an endodontic graduate programme: a cross-sectional retrospective study. Int Endod J 2019; 52:13-18. DOI: 10.1111/iej.12982.
  28. Chakka NVMK, Ratnakar P, Das S, et al. Do NiTi instruments show defects before separation? Defects caused by torsional fatigue in hand and rotary nickel-titanium (NiTi) instruments which lead to failure during clinical use. J Contemp Dent Pract 2012;13:867-872. DOI: 10.5005/jp-journals-10024-1243.
  29. Coelho MS, Card SJ, Tawil PZ. Safety assessment of two hybrid instrumentation techniques in a dental student endodontic clinic: a retrospective study. J Dent Educ 2017;81:333-339. DOI: 10.1002/j.0022-0337. 2017.81.3.tb06279.x
  30. Cunha RS, Junaid A, Ensinas P, et al. Assessment of the separation incidence of reciprocating WaveOne files: a prospective clinical study. J Endod 2014;40:922-924. DOI: 10.1016/j.joen.2014.03.016.
  31. Di Fiore PM, Genov KA, Komaroff E, et al. Nickel.titanium rotary instrument fracture: a clinical practice assessment. Int Endod J 2018;39:700-708. DOI: 10.1111/j.1365-2591.2006.01137.x.
  32. Ehrhardt I, Zuolo ML, Cunha RS, et al. Assessment of the separation incidence of Mtwo files used with preflaring: prospective clinical study. J Endod 2012;38;1078-1081. DOI: 10.1016/j.joen.2012.05.001.
  33. Gambarini G. Cyclic fatigue of ProFile rotary instruments after prolonged clinical use. Int Endod J 2001;34:386-389. DOI: 10.1046/j.1365-2591.2001.00259.x.
  34. Gambarini G, Piasecki L, Di Nardo D, et al. Incidence of deformation and fracture of twisted file adaptive instruments after repeated clinical use. J Oral Maxillofac Res 2016;7(4):e5. DOI: 10.5037/jomr.2016.7405.
  35. Haug SR, Solfjeld AF, Ranheim LE, et al. Impact of case difficulty on endodontic mishaps in an undergraduate student clinic. J Endod 2018;44:1088-1095. DOI: 10.1016/j.joen.2018.03.012.
  36. Iqbal MK, Kohli MR, Kim JS. A retrospective clinical study of incidence of root canal instrument separation in an endodontics graduate programme: a PennEndo database study. J Endod 2006;32:1048-1052. DOI: 10.1016/j.joen.2006.03.001.
  37. Knowles K, Hammond NB, Biggs SG, et al. Incidence of instrument separation using LightSpeed rotary instruments. J Endod 2006;32:14-16. DOI: 10.1016/j.joen.2005.10.008.
  38. Machado R, de Souza Junior C, Colombelli MF, et al. Incidence of ProTaper universal system instrument fractures - a retrospective clinical study. Eur Endod J 2018;2:77-81. DOI: 10.14744/eej.2018. 30592.
  39. Ounsi H, Salameh Z, Al-Shalan T, et al. Effect of clinical use on the cyclic fatigue resistance of ProTaper nickel-titanium rotary instruments. J Endod 2007;33:737-741. DOI: 10.1016/j.joen.2007.03.006.
  40. Plotino G, Grande N, Porciani MPF. Deformation and fracture incidence of Reciproc instruments: a clinical evaluation. Int Endod J 2014;48:199-205. DOI: 10.1111/iej.12302.
  41. Shen Y, Coil JM, Mclean AGR, et al. Defects in nickel-titanium instruments after clinical use. Part 5: single use from endodontic specialty practices. J Endod 2009;35:1363-1367. DOI: 10.1016/j. joen.2009.07.004.
  42. Shen Y, Coil JM, Zhou H, et al. ProFile vortex instruments after clinical use: a metallurgical properties study. J Endod 2012;38:1613-1617. DOI: 10.1016/j.joen.2012.09.018.
  43. Shen Y, Coil JM, Zhou H, et al. HyFlex nickel.titanium rotary instruments after clinical use: metallurgical properties. Int Endod J 2013;46:720-729. DOI: 10.1111/iej.12049.
  44. Shen Y, Zhou H, Coil JM, et al. ProFile vortex and vortex blue nickeltitanium rotary instruments after clinical use. J Endod 2015;41:937-942. DOI: 10.1016/j.joen.2015.02.003.
  45. Shen Y, Coil JM, Mo AJ, et al. WaveOne rotary instruments after clinical use. J Endod 2016;42:186-189. DOI: 10.1016/j.joen.2015.10.008.
  46. Spanaki-Voreadi AP, Kerezoudis NP, Zinelis S. Failure mechanism of ProTaper Ni.Ti rotary instruments during clinical use: fractographic analysis. Int Endod J 2006;39:171-178. DOI: 10.1111/j.1365- 2591.2006.01065.x.
  47. Spili P, Parashos P, Messer HH. The impact of instrument fracture on outcome of endodontic treatment. J Endod 2005;31:845-850. DOI: 10.1097/01.don.0000164127.62864.7c.
  48. Tzanetakis G, Kontakiotis EG, Maurikou DV, et al. Prevalence and management of instrument fracture in the postgraduate endodontic program at the dental school of Athens: a five-year retrospective clinical study. J Endod 2008;34:675-678. DOI: 10.1016/j. joen.2008.02.039.
  49. Ungerechts C, Bardsen A, Fristad I. Instrument fracture in root canals - where, why, when and what? A study from a student clinic. Int Endod J 2014;47:183-190. DOI: 10.1111/iej.12131.
  50. Vieira EP, Franca EC, Martins RC, et al. Influence of multiple clinical use on fatigue resistance of ProTaper rotary nickel-titanium instruments. Int Endod J 2008;41:163-172. DOI: 10.1111/j.1365-2591.2007.01336.x.
  51. Wang N, Ge J, Xie S, et al. Analysis of Mtwo rotary instrument separation during endodontic therapy: a retrospective clinical study. Cell Biochem Biophys 2014;70:1091-1095. DOI: 10.1007/s12013-014- 0027-0.
  52. Wolcott S, Wolcott J, Ishley D, et al. Separation incidence of protaper rotary instruments: a large cohort clinical evaluation. J Endod 2006;32:1139-1141. DOI: 10.1016/j.joen.2006.05.015.
  53. Wu J, Lei G, Yan M, et al. Instrument separation analysis of multi-used ProTaper Universal rotary system during root canal therapy. J Endod 2011;37:758-763. DOI: 10.1016/j.joen.2011.02.021.
  54. Y.lmaz A, Gokyay SS, R, et al. Evaluation of deformation and fracture rates for nickel-titanium rotary instruments according to the frequency of clinical use. Eur Oral Res 2018;52:89-93. DOI: 10.26650/eor.2018.461.
  55. Kader MA, Almagtaf AS, Babiker A, et al. Assessment of the quality of root canal treatment performed by undergraduates in college of dentistry, King Khalid University, Saudi Arabia: a radiographic analysis. J Int Oral Health 2016;8:575-578. DOI: 10.1016/j.jtumed.2016.08.010
  56. Bahia MG, Buono VTL, Horizonte B, et al. Decrease in the fatigue resistance of nickel-titanium rotary instruments after clinical use in curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol 2005;100:249-255. DOI: 10.1016/j.tripleo.2004.10.013.
  57. Balto H, Al Khalifah S, Al Mugairin S, et al. Technical quality of root fillings performed by undergraduate students in Saudi Arabia. Int Endod J 2010;43:292-300. DOI: 10.1111/j.1365-2591.2009.01679.x.
  58. Bierenkrant DE, Parashos P, Messer HH. The technical quality of nonsurgical root canal treatment performed by a selected cohort of Australian endodontists. Int Endod J 2008;41:561-570. DOI: 10.1111/j.1365-2591.2008.01398.x.
  59. Boucher Y, Matossian L, Rilliard F, et al. Radiographic evaluation of the prevalence and technical quality of root canal treatment in a French subpopulation. Int Endod J 2002;35:229-238. DOI: 10.1046/j.1365- 2591.2002.00469.x.
  60. Cheung GSP, Liu CSY. A retrospective study of endodontic treatment outcome between nickel-titanium rotary and stainless steel hand filing techniques. J Endod 2009;35:938-943. DOI: 10.1016/j. joen.2009.04.016.
  61. Zambon da Silva P, Ribeiro FC, Xavier JMB, et al. Radiographic evaluation of root canal treatment performed by undergraduate students, part I; iatrogenic errors. Iran Endod J 2018;13:30-36. DOI: 10.22037/iej.v13i1.16800.
  62. Eleftheriadis GI, Lambrianidis TP. Technical quality of root canal treatment and detection of iatrogenic errors in an under-graduate dental clinic. Int Endod J 2005;38:725-734. DOI: 10.1111/j.1365- 2591.2005.01008.x.
  63. Khabbaz MG, Protogerou E, Douka E. Radiographic quality of root fillings performed by undergraduate students. Int Endod J 2010;43:499-508. DOI: 10.1111/j.1365-2591.2010.01706.x
  64. Mozayeni MA, Golshah A, Kerdar NN. A survey on NiTi rotary instruments usage by endodontists and general dentist in Tehran. Iran Endod J 2011;6:168–175. DOI: 10.22037/iej.v6i4.2257
  65. Rafeek R, Smith WA, Mankee MS, et al. Radiographic evaluation of the technical quality of root canal fillings performed by dental students. Aust Endod J 2012;38:64–69. DOI: 10.1111/j.1747-4477.2010. 00270.x.
  66. Ribeiro DM, Re Us JC, Felippe WT, et al. Technical quality of root canal treatment performed by undergraduate students using hand instrumentation: a meta-analysis. Int Endod J. 2018;51:269–283. DOI: 10.1111/iej.12853.
  67. Rosen E, Venezia NB, Azizi H, et al. A comparison of cone-beam computed tomography with periapical radiography in the detection of separated instruments retained in the apical third of root canal–filled teeth. J Endod 2016;42:1035–1039. DOI: 10.1016/j.joen.2016.04.016.
  68. Saatchi M, Mohammadi G, Sichani AV, Moshkforoush S. Technical quality of root canal treatment performed by undergraduate clinical students of Isfahan Dental School. Iran Endod J 2018;13:88–93. DOI: 10.22037/iej.v13i1.18517.
  69. Gambarini G, Galli M, Di Nardo D, et al. Differences in cyclic fatigue lifespan between two different heat treated NiTi endodontic rotary instruments: WaveOne gold vs EdgeOne fire. J Clin Exp Dent 2019;11:e609–e613. DOI: 10.4317/jced.55839.
  70. Gambarini G, Seracchiani M, Piasecki L, et al. Measurement of torque generated during intracanal instrumentation in vivo. Int Endod J. 2019;52:737–745. DOI: 10.1111/iej.13042.
  71. Plotino G, Grande NM, Mazza C, et al. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:e60–e66. DOI: 10.1016/j.tripleo.2009.08.009.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.