The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 22 , ISSUE 7 ( July, 2021 ) > List of Articles


Histological Comparison of Post-extraction Alveolar Bone Repair Treated with Melatonin and Calcium Sulfate: An In Vivo Study in Cavia porcellus

Henrry Torres, Franco Mauricio, Román Mendoza, Daniel Alvítez-Temoche, Julia Medina, Frank Mayta-Tovalino

Keywords : Bone repair, Calcium sulfate, Cavia porcellus, Melatonin

Citation Information : Torres H, Mauricio F, Mendoza R, Alvítez-Temoche D, Medina J, Mayta-Tovalino F. Histological Comparison of Post-extraction Alveolar Bone Repair Treated with Melatonin and Calcium Sulfate: An In Vivo Study in Cavia porcellus. J Contemp Dent Pract 2021; 22 (7):739-744.

DOI: 10.5005/jp-journals-10024-3150

License: CC BY-NC 4.0

Published Online: 28-09-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Aim and objective: To histologically compare alveolar bone repair after tooth extraction treated with melatonin and calcium sulfate in an in vivo experimental study in guinea pigs (Cavia porcellus). Materials and methods: The study was of longitudinal, prospective, and experimental design in an animal bio-model. A total of 24 male guinea pigs were included, weighing from 700 to 900 g and separated into two experimental groups (melatonin and calcium sulfate) for three periods (15, 30, and 45 days) at 15-day intervals after surgery. The guinea pigs were randomly included into groups for the time evaluated. Results: In relation to bone repair cells using calcium sulfate, the presence of osteoblasts at 15, 30, and 45 days was 39.0 ± 63, 55.3 ± 6.0, respectively, with 61.3 ± 10.0 cells per field. Regarding bone repair cells using melatonin, the presence of osteoblasts at 15, 30, and 45 days was 25.0 ± 3.7, 49.3 ± 1.5, respectively, with 53.6 ± 5.6 cells per field. Conclusion: Both melatonin and calcium sulfate were found to be useful in bone repair at a histological and clinical level, although they present certain nonsignificant, albeit marked advantages in the bone repair process when compared with the control socket at the histological level. Clinical significance: This research allows us to know the usefulness of these easily accessible chemicals for the generation of bone repair.

PDF Share
  1. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423(6937):337–342. DOI: 10.1038/nature01658.
  2. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci 2006;1092:385–396. DOI: 10.1196/annals.1365.035.
  3. Huiskes R. If bone is the answer, then what is the question? J Anat 2000;197(Pt 2):145–156. DOI: 10.1046/j.1469-7580.2000.19720145.x.
  4. Mano T, Akita K, Fukuda N, et al. Histological comparison of three apatitic bone substitutes with different carbonate contents in alveolar bone defects in a beagle mandible with simultaneous implant installation. J Biomed Mater Res B Appl Biomater 2020;108(4): 1450–1459. DOI: 10.1002/jbm.b.34492.
  5. Sargolzaie N, Rafiee M, Salari Sedigh H, et al. Comparison of the effect of hemihydrate calcium sulfate granules and Cerabone on dental socket preservation: an animal experiment. J Dent Res Dent Clin Dent Prospects 2018;12(4):238–244. DOI: 10.15171/joddd.2018.037.
  6. Hao F, Qin L, Liu J, et al. Assessment of calcium sulfate hemihydrate-tricalcium silicate composite for bone healing in a rabbit femoral condyle model. Mater Sci Eng C Mater Biol Appl 2018;88:53–60. DOI: 10.1016/j.msec.2018.02.024.
  7. Artas G, Gul M, Acikan I, et al. A comparison of different bone graft materials in peri-implant guided bone regeneration. Braz Oral Res 2018;32:e59. DOI: 10.1590/1807-3107bor-2018.vol32.0059.
  8. Cutando A, Gómez-Moreno G, Arana C, et al. Melatonin stimulates osteointegration of dental implants. J Pineal Res 2008;45(2):174–179. DOI: 10.1111/j.1600-079X.2008.00573.x.
  9. Guardia J, Gómez-Moreno G, Ferrera MJ, et al. Evaluation of effects of topic melatonin on implant surface at 5 and 8 weeks in Beagle dogs. Clin Implant Dent Relat Res 2011;13(4):262–268. DOI: 10.1111/j.1708-8208.2009.00211.x.
  10. Calvo-Guirado JL, Gómez-Moreno G, López-Marí L, et al. Actions of melatonin mixed with collagenized porcine bone versus porcine bone only on osteointegration of dental implants. J Pineal Res 2010;48(3):194–203. DOI: 10.1111/j.1600-079X.2009.00743.x.
  11. Calvo-Guirado JL, Gómez-Moreno G, Barone A, et al. Melatonin plus porcine bone on discrete calcium deposit implant surface stimulates osteointegration in dental implants. J Pineal Res 2009;47(2):164–172. DOI: 10.1111/j.1600-079X.2009.00696.x.
  12. Hu MH, Lee PY, Chen WC, et al. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model. Mater Si Eng C Mater Biol Appl 2014;45:82–88. DOI: 10.1016/j.msec.2014.08.065.
  13. Kutkut A, Andreana S, Kim HL, Monaco E Jr. Extraction socket preservation graft before implant placement with calcium sulfate hemihydrate and platelet-rich plasma: a clinical and histomorphometric study in humans. J Periodontol. 2012 Apr;83(4):401–9. DOI: 10.1902/jop.2011.110237.
  14. Cutando A, Arana C, Gómez-Moreno G, et al. Local application of melatonin into alveolar sockets of beagle dogs reduces tooth removal-induced oxidative stress. J Periodontol 2007;78(3):576–583. DOI: 10.1902/jop.2007.060244.
  15. Schlickewei CW, Laaff G, Andresen A, et al. Bone augmentation using a new injectable bone graft substitute by combining calcium phosphate and bisphosphonate as composite–an animal model. J Orthop Surg Res 2015;10:116. DOI: 10.1186/s13018-015-0263-z.
  16. Li JJ, Dunstan CR, Entezari A, Li Q, et al. A novel bone substitute with high bioactivity, strength, and porosity for repairing large and load-bearing bone defects. Adv Healthc Mater 2019;8(8):e1801298. DOI: 10.1002/adhm.201801298.
  17. Sugawara A, Fujikawa K, Takagi S, Chow LC. Histological analysis of calcium phosphate bone grafts for surgically created periodontal bone defects in dogs. Dent Mater J. 2008 Nov;27(6):787–94. DOI: 10.4012/dmj.27.787.
  18. Busenlechner D, Tangl S, Mair B, et al. Simultaneous in vivo comparison of bone substitutes in a guided bone regeneration model. Biomaterials 2008;29(22):3195–3200. DOI: 10.1016/j.biomaterials.2008.04.021.
  19. Anbu RT, Suresh V, Gounder R, et al. Comparison of the efficacy of three different bone regeneration materials: an animal study. Eur J Dent 2019;13(1):22–28. DOI: 10.1055/s-0039-1688735.
  20. Macedo RM, Lacerda SA, Okamoto R, et al. Vital bone formation after grafting of autogenous bone and biphasic calcium phosphate bioceramic in extraction sockets of rats: histological, histometric, and immunohistochemical evaluation. Implant Dent 2018;27(6):615–622. DOI: 10.1097/ID.0000000000000815.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.