Citation Information :
Shah R, Thomas R, Gowda TM, Baron TK, Vemanaradhya GG, Bhagat S. In Vitro Evaluation of Osteoblast Response to the Effect of Injectable Platelet-rich Fibrin Coating on Titanium Disks. J Contemp Dent Pract 2021; 22 (2):107-110.
Aim: Biomimetic implant surface coatings can improve osteoblast response and enhance osseointegration. This study aimed to assess the response of osteoblast-like cell line (MG-63) coating of injectable platelet-rich fibrin on titanium discs.
Materials and methods: Injectable-PRF (i-PRF) was prepared by centrifugation of blood at 700 rpm for 3 minutes without any anti-coagulant in i-PRF tubes. Ten commercially pure titanium discs were divided into control groups comprising plain discs, and test group, titanium discs were coated with i-PRF. These were then added to the cultured MG-63 cells. Cell proliferation, alkaline phosphatase production, and mineralization were assessed in both groups at day 1, 7, 14, and 21.
Results: The cell proliferation, alkaline phosphatase production, and mineralization increased significantly from day 1 to day 21 in both test and control groups and was significantly higher in the test group than in control group at day 1, 7, 14, and 21 (p <0.001).
Conclusions: Coating of titanium discs with i-PRF causes increased proliferation, alkaline phosphatase production, and increased mineralization at day 1, 7, 14, and 21 in MG-63 osteoblast-like cells.
Clinical significance: Improved osteoblast proliferation and mineralization demonstrate enhanced activity on the surface of an implant, which in turn may lead to increased bone to implant contact and faster/ and/or enhanced osseointegration.
Jemat A, Ghazali MJ, Razali M, et al. Surface modifications and their effects on titanium dental implants. Biomed Res Int. 2015;2015:791725. DOI: 10.1155/2015/791725.
Romanò CL, Scarponi S, Gallazzi E, et al. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 2015;10:157. DOI: 10.1186/s13018-015-0294-5.
Borie E, Oliví DG, Orsi IA, et al. Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med 2015;8(5):7922–7929.
Shah R, Triveni MG, Thomas R, et al. An update on the protocols and biologic actions of platelet rich fibrin in dentistry. Eur J Prosthodont Restor Dent 2017;25(2):64–72. DOI: 10.1922/EJPRD_01690Shah09.
Bansal S, Garg A, Khurana R, et al. Platelet-rich fibrin or platelet-rich plasma—which one is better? An opinion. Indian J Dent Sci 2017;9(5):49–52. DOI: 10.4103/IJDS.IJDS_55_17.
Öncü E, Alaaddinoğlu EE. The effect of platelet-rich fibrin on implant stability. Int J Oral Maxillofac Implants 2015;30(3):578–582. DOI: 10.11607/jomi.3897.
Lollobrigida M, Maritato M, Bozzuto G, et al. Biomimetic implant surface functionalization with liquid L-PRF products: in vitro study. Biomed Res Int 2018;2018:9031435. DOI: 10.1155/2018/9031435.
Wang X, Zhang Y, Choukroun J, et al. Behaviour of gingival fibroblasts on titanium implant surfaces in combination with either injectable-PRF or PRP. Int J Mol Sci 2017;18(2):331. DOI: 10.3390/ijms18020331.
Jeon C, Oh KC, Park KH, et al. Effects of ultraviolet treatment and alendronate immersion on osteoblast-like cells and human gingival fibroblasts cultured on titanium surfaces. Sci Rep 2019;9(1):2581. DOI: 10.1038/s41598-019-39355-3.
Park SJ, Bae SB, Kim SK, et al. Effect of implant surface microtopography by hydroxyapatite grit-blasting on adhesion, proliferation, and differentiation of osteoblast-like cell line, MG-63. J Korean Assoc Oral Maxillofac Surg 2011;37(3):214. DOI: 10.5125/jkaoms.2011.37.3.214.
Ma T, Ge X, Zhang Y, et al. Effect of titanium surface modifications of dental implants on rapid osseointegration. In: Sasaki K, Suzuki O, Takahashi N, eds. Interface Oral Health Science 2016. Singapore: Springer; 2017. DOI: 10.1007/978-981-10-1560-1_20.
Varela HA, Souza JCM, Nascimento RM, et al. Injectable platelet rich fibrin: cell content, morphological, and protein characterization. Clin Oral Investig 2019;23(3):1309–1318. DOI: 10.1007/s00784-018-2555-2.
Miron RJ, Fujioka-Kobayashi M, Hernandez M, et al. Injectable platelet rich fibrin (i-PRF): opportunities in regenerative dentistry? Clin Oral Investig 2017;21(8):2619–2627. DOI: 10.1007/s00784-017-2063-9.
Abd El Raouf M, Wang X, Miusi S, et al. Injectable-platelet rich fibrin using the low speed centrifugation concept improves cartilage regeneration when compared to platelet-rich plasma. Platelets 2019;30(2):213–221. DOI: 10.1080/09537104.2017.1401058.
Wang X, Zhang Y, Choukroun J, et al. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets 2018;29(1):48–55. DOI: 10.1080/09537104.2017.1293807.
Kour P, Pudakalkatti PS, Vas AM, et al. Comparative evaluation of antimicrobial efficacy of platelet-rich plasma, platelet-rich fibrin, and injectable platelet-rich fibrin on the standard strains of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Contemp Clin Dent 2018;9(Suppl 2):S325–S330. DOI: 10.4103/ccd.ccd_367_18.
Staehlke S, Rebl H, Nebe B. Phenotypic stability of the human MG-63 osteoblastic cell line at different passages. Cell Biol Int 2019;43(1):22–32. DOI: 10.1002/cbin.11073.
Pokrowiecki R, Mielczarek A, Zaręba T, et al. Oral microbiome and peri-implant diseases: where are we now? Ther Clin Risk Manag 2017;13:1529–1542. DOI: 10.2147/TCRM.S139795.