The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 22 , ISSUE 3 ( March, 2021 ) > List of Articles


Changes in Airway Dimensions Following Non-extraction Clear Aligner Therapy in Adult Patients with Mild-to-moderate Crowding

Suzzane Horani, Abdul Basir Barmak, Paul Emile Rossouw, Dimitrios Michelogiannakis

Keywords : Airway dimensions, Clear aligner therapy, Cone-beam computed tomography, Invisalign, Non-extraction therapy, Retrospective study

Citation Information : Horani S, Barmak AB, Rossouw PE, Michelogiannakis D. Changes in Airway Dimensions Following Non-extraction Clear Aligner Therapy in Adult Patients with Mild-to-moderate Crowding. J Contemp Dent Pract 2021; 22 (3):224-230.

DOI: 10.5005/jp-journals-10024-3037

License: CC BY-NC 4.0

Published Online: 27-01-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Aim and objective: This retrospective study aimed to assess changes in airway dimensions with non-extraction clear-aligner-therapy (NE-CAT) in adult patients with mild-to-moderate crowding. Materials and methods: Cone-beam computed tomographic images were evaluated for 24 adults (16 females and 8 males) with mild-to-moderate crowding, and Class I or mild skeletal Class II malocclusion before and after NE-CAT. Cross-sectional and volumetric airway measurements were performed at the level of the nasal cavity, upper pharyngeal airway space (UAS), and lower pharyngeal airway space (LAS). The Frankfort-mandibular plane angle (FMA), point A-nasion-point B (ANB) angle, and intermolar width were measured. A paired t-test was used to assess changes in airway measurements. Linear regression analyses were performed to identify predictors of the pharyngeal airway volume change at the levels of the UAS and LAS. Results: There was a significant decrease (p = 0.004) in UAS mean volume (486.63 ± 752.73 mm3), LAS mean volume (p = 0.006), and cross-sectional airway area (p = 0.022) (1536.92 ± 2512.02 mm3 and 34.66 ± 69.35 mm2, respectively) with NE-CAT. The mean airway volume of the nasal cavity, mean cross-sectional airway areas of the nasal cavity and UAS, and mean minimum cross-sectional pharyngeal airway area did not change significantly with NE-CAT. Changes in pharyngeal airway volume were not significantly associated with patients’ age, gender, treatment duration, pretreatment ANB angle, and changes in FMA and maxillary first intermolar width with NE-CAT. Conclusion: Significant changes in the pharyngeal airway dimensions of the UAS and LAS with NE-CAT in adult patients with mild-to-moderate crowding were identified. Clinical significance: The results of the present study show that NE-CAT is not associated with an improvement in airway dimensions in adults with mild to moderate crowding.

  1. Neely ML, Miller R, Rich SE, et al. Effect of malocclusion on adults seeking orthodontic treatment. Am J Orthod Dentofacial Orthop 2017;152(6):778–787. DOI: 10.1016/j.ajodo.2017.04.023.
  2. Rosvall MD, Fields HW, Ziuchkovski J, et al. Attractiveness, acceptability, and value of orthodontic appliances. Am J Orthod Dentofacial Orthop 2009;135(3):276–277. DOI: 10.1016/j.ajodo.2008.09.020.
  3. Rossini G, Parrini S, Castroflorio T, et al. Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod 2015;85(5):881–889. DOI: 10.2319/061614-436.1.
  4. Guilleminault C, Sullivan SS, Huang YS. Sleep-disordered breathing, orofacial growth, and prevention of obstructive sleep apnea. Sleep Med Clin 2019;14(1):13–20. DOI: 10.1016/j.jsmc.2018.11.002.
  5. Schulhof RJ. Consideration of airway in orthodontics. J Clin Orthod 1978;12(6):440–444.
  6. Hourfar J, Kinzinger GSM, Feifel H, et al. Effects of combined orthodontic–orthognathic treatment for class II and III correction on posterior airway space: comparison of mono- and bignathic osteotomies. J Orofac Orthop 2017;78(6):455–465. DOI: 10.1007/s00056-017-0101-5.
  7. Qahtani ND. Impact of different orthodontic treatment modalities on Airway: a literature review. Pak J Med Sci 2016;32(1):249–252. DOI: 10.12669/pjms.321.8743.
  8. Vinha PP, Eckeli AL, Faria AC, et al. Effects of surgically assisted rapid maxillary expansion on obstructive sleep apnea and daytime sleepiness. Sleep Breath 2016;20(2):501–508. DOI: 10.1007/s11325-015-1214-y.
  9. Al-Jewair T, Kurtzner K, Giangreco T, et al. Effects of clear aligner therapy for Class II malocclusion on upper airway morphology and daytime sleepiness in adults: a case series. Int Orthod 2020;18(1):154–164. DOI: 10.1016/j.ortho.2019.12.002.
  10. Bollhalder J, Hanggi MP, Schatzle M, et al. Dentofacial and upper airway characteristics of mild and severe class II division 1 subjects. Eur J Orthod 2013;35(4):447–453. DOI: 10.1093/ejo/cjs010.
  11. Santiesteban Ponciano FA, Gutiérrez-Rojo MF, Gutiérrez-Rojo JF. Crowding severity associated with dental mass. Rev Mex Ortod 2016;4(3):e163–e165. DOI: 10.1016/j.rmo.2016.10.032.
  12. Pinheiro de Magalhães Bertoz A, Souki BQ, Lione R, et al. Three-dimensional airway changes after adenotonsillectomy in children with obstructive apnea: do expectations meet reality? Am J Orthod Dentofacial Orthop 2019;155(6):791–800. DOI: 10.1016/j.ajodo.2018.06.019.
  13. Oliveira PM, Cheib-Vilefort PL, de Parsia Gontijo H, et al. Three-dimensional changes of the upper airway in patients with Class II malocclusion treated with the Herbst appliance: a cone-beam computed tomography study. Am J Orthod Dentofacial Orthop 2020;157(2):205–211. DOI: 10.1016/j.ajodo.2019.03.021.
  14. El H, Palomo JM. Three-dimensional evaluation of upper airway following rapid maxillary expansion: a CBCT study. Angle Orthod 2014;84(2):265–273. DOI: 10.2319/012313-71.1.
  15. Stefanovic N, El H, Chenin DL, et al. Three-dimensional pharyngeal airway changes in orthodontic patients treated with and without extractions. Orthod Craniofac Res 2013;16(2):87–96. DOI: 10.1111/ocr.12009.
  16. Sun FC, Yang WZ, Ma YK. [Effect of incisor retraction on three-dimensional morphology of upper airway and fluid dynamics in adult class patients with bimaxillary protrusion]. Zhonghua Kou Qiang Yi Xue Za Zhi 2018;53(6):398–403. DOI: 10.3760/cma.j.issn.1002-0098.2018.06.007.
  17. Svaza J, Skagers A, Cakarne D, et al. Upper airway sagittal dimensions in obstructive sleep apnea (OSA) patients and severity of the disease. Stomatologija 2011;13(4):123–127.
  18. Jordan AS, McSharry DG, Malhotra A. Adult obstructive sleep apnoea. Lancet 2014;383(9918):736–747. DOI: 10.1016/S0140-6736(13)60734-5.
  19. Ogawa T, Enciso R, Shintaku WH, et al. Evaluation of cross-section airway configuration of obstructive sleep apnea. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103(1):102–108. DOI: 10.1016/j.tripleo.2006.06.008.
  20. Mislik B, Hanggi MP, Signorelli L, et al. Pharyngeal airway dimensions: a cephalometric, growth-study-based analysis of physiological variations in children aged 6–17. Eur J Orthod 2014;36(3):331–339. DOI: 10.1093/ejo/cjt068.
  21. Buck LM, Dalci O, Darendeliler MA, et al. Effect of surgically assisted rapid maxillary expansion on upper airway volume: a systematic review. J Oral Maxillofac Surg 2016;74(5):1025–1043. DOI: 10.1016/j.joms.2015.11.035.
  22. Niu X, Di Carlo G, Cornelis MA, et al. Three-dimensional analyses of short- and long-term effects of rapid maxillary expansion on nasal cavity and upper airway: a systematic review and meta-analysis. Orthod Craniofac Res 2020;23(3):250–276. DOI: 10.1111/ocr.12378.
  23. Guijarro-Martinez R, Swennen GR. Cone-beam computerized tomography imaging and analysis of the upper airway: a systematic review of the literature. Int J Oral Maxillofac Surg 2011;40(11):1227–1237. DOI: 10.1016/j.ijom.2011.06.017.
  24. Malhotra A, Huang Y, Fogel R, et al. Aging influences on pharyngeal anatomy and physiology: the predisposition to pharyngeal collapse. Am J Med 2006;119(1):72.e9–72.e14. DOI: 10.1016/j.amjmed.2005.01.077.
  25. Anandarajah S, Dudhia R, Sandham A, et al. Risk factors for small pharyngeal airway dimensions in preorthodontic children: a three-dimensional study. Angle Orthod 2017;87(1):138–146. DOI: 10.2319/012616-71.1.
  26. Bozzini MFR, Valladares-Neto J, Paiva JB, et al. Sex differences in pharyngeal airway morphology in adults with skeletal Class III malocclusion. Cranio 2018;36(2):98–105. DOI: 10.1080/08869634.2017.1300995.
  27. Firwana A, Wang H, Sun L, et al. Relationship of the airway size to the mandible distance in Chinese skeletal Class I and Class II adults with normal vertical facial pattern. Indian J Dent Res 2019;30(3):368–374. DOI: 10.4103/ijdr.IJDR_526_18.
  28. Hu XB, Zhang K, Wang DW, et al. [Evaluation of upper airway dimension among adolescent patients with different sagittal skeletal patterns by cone-beam CT]. Shanghai Kou Qiang Yi Xue 2017;26(5):530–534.
  29. Grauer D, Cevidanes LS, Styner MA, et al. Pharyngeal airway volume and shape from cone-beam computed tomography: relationship to facial morphology. Am J Orthod Dentofacial Orthop 2009;136(6):805–814. DOI: 10.1016/j.ajodo.2008.01.020.
  30. Aloufi F, Preston CB, Zawawi KH. Changes in the upper and lower pharyngeal airway spaces associated with rapid maxillary expansion. ISRN Dent 2012;2012:290964. DOI: 10.5402/2012/290964.
  31. Liu P, Jiao D, Wang X, et al. Changes in maxillary width and upper airway spaces in young adults after surgically assisted rapid palatal expansion with surgically facilitated orthodontic therapy. Oral Surg Oral Med Oral Pathol Oral Radiol 2019;127(5):381–386. DOI: 10.1016/j.oooo.2018.11.005.
  32. Kecik D. Three-dimensional analyses of palatal morphology and its relation to upper airway area in obstructive sleep apnea. Angle Orthod 2017;87(2):300–306. DOI: 10.2319/051116-377.1.
  33. Shigeta Y, Ogawa T, Ando E, et al. Influence of tongue/mandible volume ratio on oropharyngeal airway in Japanese male patients with obstructive sleep apnea. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111(2):239–243. DOI: 10.1016/j.tripleo.2010.10.013.
  34. Thapa A, Jayan B, Nehra K, et al. Pharyngeal airway analysis in obese and non-obese patients with obstructive sleep apnea syndrome. Med J Armed Forces India 2015;71(Suppl 2):S369–S375. DOI: 10.1016/j.mjafi.2014.07.001.
  35. Sandeep KS, Singaraju GS, Reddy VK, et al. Evaluation of body weight, body mass index, and body fat percentage changes in early stages of fixed orthodontic therapy. J Int Soc Prev Community Dent 2016;6(4):349–358. DOI: 10.4103/2231-0762.186796.
  36. Michelogiannakis D, Rossouw PE, Khan J, et al. Influence of increased body mass index on orthodontic tooth movement and related parameters in children and adolescents: a systematic review of longitudinal controlled clinical studies. J Orthod 2019;46(4):323–334. DOI: 10.1177/1465312519873669.
  37. Euser AM, Zoccali C, Jager KJ, et al. Cohort studies: prospective versus retrospective. Nephron Clin Pract 2009;113(3):c214–c217. DOI: 10.1159/000235241.
  38. Pithon MM. Importance of the control group in scientific research. Dental Press J Orthod 2013;18(6):13–14. DOI: 10.1590/s2176-94512013000600003.
  39. Gurani SF, Cattaneo PM, Rafaelsen SR, et al. The effect of altered head and tongue posture on upper airway volume based on a validated upper airway analysis—an MRI pilot study. Orthod Craniofac Res 2020;23(1):102–109. DOI: 10.1111/ocr.12348.
  40. Obelenis Ryan DP, Bianchi J, Ignácio J, et al. Cone-beam computed tomography airway measurements: can we trust them? Am J Orthod Dentofacial Orthop 2019;156(1):53–60. DOI: 10.1016/j.ajodo.2018.07.024.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.