The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 22 , ISSUE 10 ( October, 2021 ) > List of Articles

ORIGINAL RESEARCH

Effect of 125–150 Hz Vibrational Frequency Electric Toothbrush on Teeth and Supporting Structures: A Finite Element Method Study

Anadha N Gujar, Prashantha G Shivamurthy, Sharanya Sabrish

Keywords : Electric toothbrush, Finite element analysis, Finite element model, Mechanical vibration, Safe range, Vibrational frequency

Citation Information : Gujar AN, Shivamurthy PG, Sabrish S. Effect of 125–150 Hz Vibrational Frequency Electric Toothbrush on Teeth and Supporting Structures: A Finite Element Method Study. J Contemp Dent Pract 2021; 22 (10):1150-1159.

DOI: 10.5005/jp-journals-10024-3202

License: CC BY-NC 4.0

Published Online: 07-02-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim and objective: The aim of this finite element method (FEM) study was to assess the safety of 125–150 Hz vibrational frequency electric toothbrush on teeth and associated structures. Materials and methods: A three-dimensional (3D) geometric model of entire skull having maxilla, mandible, and their dentitions was created using a computed tomography (CT) image of a healthy male patient. Linear static analysis was carried out by applying 15 g of force on anterior part of maxilla and mandible from labial and lingual sides each to calculate the primary displacement (sagittal, vertical, and transversal) and principal stress levels generated on the maxillary and mandibular dentition, on the maxilla and mandible and on the whole skull. Results: A force of 15 g applied to maxillary anterior teeth from labial side caused a mean deflection of 0.003 mm and stress of 0.004 MPa on the teeth and supporting structures. A force of 15 g applied to maxillary anterior teeth from palatal side caused a mean deflection of 0.017 mm and stress of 0.017 MPa on the teeth and supporting structures. A force of 15 g applied to mandibular anterior teeth from labial side caused a mean deflection of 0.078 mm and stress of 0.051 MPa on the teeth and supporting structures. A force of 15 g applied to mandibular anterior teeth from lingual side caused a mean deflection of 0.077 mm and stress of 0.051 MPa on the teeth and supporting structures. Conclusion: For the applied loads and boundary conditions, very small or negligible amount of stresses were observed in maxilla, mandible, and their dentitions. The vibrational frequency of 150 Hz producing 15 g of force did not produce any harmful effects on maxilla, mandible, and their dentitions. Hence, 125–150 Hz of vibrational frequency can be considered optimum. Clinical significance: An electric toothbrush using the vibration of 125–150 Hz produces negligible stress on teeth and associated structures.


HTML PDF Share
  1. Sumit S. Change in the rate of Orthodontic tooth movement and Interleukin-1 beta level in gingival crevicular fluid in response to mechanical vibratory stimulation from electrical toothbrush [Master of science thesis]. University of Prince of Songkla; 2010.
  2. Mostafa MM. Developing a corticopuncture system to accelerate the rate of tooth movement [Master of science thesis]. University of California Los Angeles; 2014.
  3. Thomas GD. The effect of varying frequencies of mechanical vibration on the rate of orthodontic tooth movement in mice [Master's thesis]. University of Connecticut School of Medicine and Dentistry; 2013.
  4. Dubravko P, Ravikumar A, Vishnu R, et al. Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: a double-blind, randomized controlled trial. Semin Orthod 2015;21(3):187–194. DOI: 10.1053/j.sodo.2015.06.005.
  5. Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 2000;26(3):282–291. DOI: 10.1002/(sici)1096-9101(2000)26:3<282::aid-lsm6>3.0.co;2-x.
  6. Stark TM, Sinclair PM. Effect of pulsed electromagnetic fields on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1987;91(2):91–94. DOI: 10.1016/0889-5406(87)90465-3.
  7. Yamasaki K, Shibata Y, Imai S, et al. Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1984;85(6):508–518. DOI: 10.1016/0002-9416(84)90091-5.
  8. Takano-Yamamoto T, Kawakami M, Yamashiro T. Effect of age on the rate of tooth movement in combination with local use of 1,25(OH)2D3 and mechanical force in the rat. J Dent Res 1992;71(8):1487–1492. DOI: 10.1177/00220345920710080501.
  9. Brudvik P, Rygh P. Root resorption after local injection of prostaglandin E2 during experimental tooth movement. Eur J Orthod 1991;13(4):255–263. DOI: 10.1093/ejo/13.4.255.
  10. Chidchanok L, Sumit S, Suwanna J, et al. Vibratory stimulation increases interleukin-1 beta secretion during orthodontic tooth movement. Angle Orthod 2016;86(1):74–80. DOI: 10.2319/111914-830.1.
  11. Piccioni MA, Campos EA, Saad JR, et al. Application of the finite element method in dentistry. RSBO 2013;10:369–377.
  12. Sarmah A, Mathur AK, Gupta V, et al. Finite element analysis of dental implant as orthodontic anchorage. J Contemp Dent Pract 2011;12(4):259–264. DOI: 10.5005/jp-journals-10024-1044.
  13. Singh JR, Kambalyal P, Jain M, et al. Revolution in orthodontics: finite element analysis. J Int Soc Prevent Commun Dent 2016;6(2):110–114. DOI: 10.4103/2231-0762.178743.
  14. Ansari TA, Mascarenhas R, Husain A, et al. Evaluation of the power arm in bringing about bodily movement using finite element analysis. Orthodontics (Chic.) 2011;12(4):318–329. PMID: 22299105.
  15. Bica C, Brezeanu L, Bica D, et al. Biomechanical reactions due to orthodontic forces. A finite element study. Procedia Tech 2015;19:895-900. DOI: 10.1016/j.protcy.2015.02.128.
  16. Hamnaka R, Yamoaka S, Anh TN, et al. Numeric simulation model for long term orthodontic tooth movement with contact boundary conditions using the finite element method. Am J Orthod Dentofacial Orthop 2017;152(5):601–612. DOI: 10.1016/j.ajodo.2017.03.021.
  17. Bozkurt AP, Clinsar A. Effects of mechanical vibration force on tooth movement: finite element analysis. Int J Res Granthaalayah 2018;6(1):504–515. DOI: 10.29121/granthaalayah.v6.i1.2018.1671.
  18. Bai D, Cheng BH, Lu T. Three dimensional finite element analysis of maxillary canine during the tooth translation movement. Sichuan Da Xue Bao Yi Xue Ban 2004;35(3):358–360. PMID: 15181835.
  19. Geramy A. Alveolar bone resorption and the center of resistance modification (3-D analysis by means of the finite element method). Am J Orthod Dentofacial Orthop 2000;117(4):399–405. DOI: 10.1016/s0889-5406(00)70159-4.
  20. Kojima Y, Fukui H. Numerical simulation of canine retraction by sliding mechanics. Am J Orthod Dentofacial Orthop 2005;127(5):542–551. DOI: 10.1016/j.ajodo.2004.12.007.
  21. Kojima Y, Mizuno T, Fukui H. A numerical simulation of tooth movement produced by molar uprighting spring. Am J Orthod Dentofacial Orthop 2007;132(5):630–638. DOI: 10.1016/j.ajodo.2005.07.035.
  22. Yettram AL, Wright KW, Pickard HM. Finite element stress analysis of the crowns of normal and restored teeth. J Dent Res 1976;55(6):1004–1011. DOI: 10.1177/00220345760550060201.
  23. Vasquez M, Calao E, Becerra F, et al. Initial stress differences between sliding and sectional mechanics with an endosseous implant as anchorage: A 3-dimensional finite element analysis. Angle Orthod 2001;71(4):247–256. DOI: 10.1043/0003-3219(2001)071<0247: ISDBSA>2.0.CO;2.
  24. Chan E, Darendeliler MA. Physical properties of root cementum: Part 7. Extent of root resorption under areas of compression and tension. Am J Orthod Dentofacial Orthop 2006;129(4):504–510. DOI: 10.1016/j.ajodo.2004.12.018.
  25. Chan E, Darendeliler MA. Physical properties of root cementum: Part 5. Volumetric analysis of root resorption craters after application of light and heavy orthodontic forces. Am J Orthod Dentofacial Orthop 2005;127(2):186–195. DOI: 10.1016/j.ajodo.2003.11.026.
  26. Takano-Yamamoto T, Sasaki K, Fatemeh G, et al. Synergistic acceleration of experimental tooth movement by supplementary high-frequency vibration applied with a static force in rats. Sci Rep 2017;7(1):1–7. DOI: 10.1038/s41598-017-13541-7.
  27. Hohmann A, Wolfram U, Geiger M, et al. Periodontal ligament hydrostatic pressure with areas of root resorption after application of a continuous torque moment. Angle Orthod 2007;77(4):653–659. DOI: 10.2319/060806-234.
  28. Kim T, Suh J, Kim N, et al. Optimum conditions for parallel translation of maxillary anterior teeth under retraction force determined with the finite element method. Am J Orthod Dentofacial Orthop 2010;137(5):639–647. DOI: 10.1016/j.ajodo.2008.05.016.
  29. Burgett FG, Ash MM. Comparative study of the pressure of brushing with three types of toothbrushes. J Periodontol 1974;45(6):410–413. DOI: 10.1902/jop.1974.45.6.410.
  30. Björn H, Lindhe J. On the mechanics of toothbrushing. Odontol Revy 1966;17(1):9–16. PMID: 5218905.
  31. Fraleigh CM, Mc Elhaney JH, Heiser RA. Toothbrushing force study. J Dent Res 1967;46(1):209–214. DOI: 10.1177/002203456704600 11201.
  32. Gorman WJ. Prevalence and etiology of gingival recession. J Periodontol 1967;38(4):316–322. DOI: 10.1902/jop.1967.38.4.316.
  33. Kimmelman BB, Tarin B, Paschis AE. Research in tooth brush design. Pennsylvania Dent J 1958;25:24–28.
  34. Kitchin PC. The prevalence of tooth root exposure, and the relation of the extent of such exposure to the degree of abrasion in different age classes. J Dent Res 1941;20:565–574. DOI: 10.1177/00220345410200060801.
  35. Manly RS, Foster DH. Importance of factorial designs in testing abrasion by dentifrices. J Dent Res 1967;46(2):442–445. DOI: 10.1177/00220345670460022201.
  36. Mannerberg F. Appearance of tooth surface as observed in shadow replicas in various age groups, in long-term studies, after toothbrushing, in cases of erosion, and after exposure to citrus fruit juice. Odont Revy 1960;2:70–79.
  37. O'Leary TJ, Drake RB, Gividen GJ, et al. The incidence of recession in young males. Relationship to gingival health and plaque. Periodontics 1968;6:109–119.
  38. Phaneuf EA, Harrington JH, Dale PP, et al. Automatic toothbrush: a new reciprocating action. J Am Dent Assoc 1962;65:12–25. DOI: 10.14219/jada.archive.1962.0187.
  39. Jian-lei WU, Yun-feng LIU, Wei P, et al. A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis. J Zhejiang Univ-Sci B 2018;19(7):535–546. DOI: 10.1631/jzus.B1700195.
  40. Miyashita ER, Mattos BC, Noritomi PN, et al. Finite element analysis of maxillary bone stress caused by Aramany Class IV obturator prostheses. J Prosthet Dent 2012;107(5);336–342. DOI: 10.1016/S0022-3913(12)60086-9.
  41. Pytel A, Singer FL. Simple stress. In: Strength of materials. 4th ed. Harpercollins College Div; 1987.
  42. Wiegand A, Burkhard JP, Eggmann F, et al. Brushing force of manual and sonic toothbrushes affects dental hard tissue abrasion. Arch Oral Biol 2007;52(11):1043–1047. DOI: 10.1007/s00784-012- 0788-z.
  43. Muneer S, Vandana KL. Effect of different occlusal loads on periodontium: a three-dimensional finite element analysis. CODS J Dent 2016;8(2):78–80. DOI: 10.5005/jp-journals-10063- 0018.
  44. Reddy MK, Vandana KL. Three dimensional finite element analysis of stress in the periodontium. J Int Acad Periodontol 2005;7(4):102–107. PMID: 16245640.
  45. Valentim AF, Furlan RMMM, Perilo TVC, et al. Evaluation of the force applied by the tongue and lip on the maxillary central incisor tooth. CoDAS 2014;26(3):235–240. DOI: 10.1590/2317-1782/2014201 30077.
  46. Kimmelman BB, Tarin B, Paschis AE, et al. Research in tooth brush design. Pennsylvania Dent J 1958;25:4–24.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.