The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 22 , ISSUE 11 ( November, 2021 ) > List of Articles


Histocompatibility of Thermopolymerized Denture Base Copolymer Processed with a Novel Ring-opening Oxaspiro Comonomer: A Histomorphometric Investigation in Rats

Chandrasekaran Divagar, Boaz Ebenezer Solomon, Velayudhan Anand, Ghiaz Khalid

Keywords : Comonomer, Denture, Histocompatibility, Initiation, Ring-opening

Citation Information : Divagar C, Solomon BE, Anand V, Khalid G. Histocompatibility of Thermopolymerized Denture Base Copolymer Processed with a Novel Ring-opening Oxaspiro Comonomer: A Histomorphometric Investigation in Rats. J Contemp Dent Pract 2021; 22 (11):1281-1286.

DOI: 10.5005/jp-journals-10024-3182

License: CC BY-NC 4.0

Published Online: 24-02-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Aim and objective: The aim of the research was to evaluate the histocompatibility of thermopolymerized (TP) novel denture copolymer containing 3,9-dimethylene-1,5,7,11-tetraoxaspiro[5,5]undecane (DMTOSU) comonomer in rats’ palatine tissue. Materials and methods: The rats were randomly categorized into four groups (n = 6 per group). GCW: Denture base appliance (DBA) fabricated by short polymerization cycle in a water bath without DMTOSU; GTW: DBA with 20 wt.% DMTOSU polymerized at 70°C for 2 hours followed by short polymerization cycle in a water bath; GTA: DBA with 20 wt.% DMTOSU polymerized at 60°C for 45 minutes followed by 130°C for 20 minutes in an autoclave; and Group NC (negative control): rats with no DBA. The rats were euthanized after 2 weeks and the palatal tissues were subjected to histological examination. Epithelial thickness (ET), connective tissue thickness (CT), and keratin layer thickness (KT) were measured. Results: GCW exhibited greater ET, CT, and KT than the other groups. The ET and KT of GTA were significantly lesser than GTW. Multiple comparisons exhibited significant differences between the groups, except for GTW and GTA concerning the CT. Conclusion: The novel denture copolymer containing 20 wt.% of DMTOSU comonomer is histocompatible with rats’ palatine tissue. Clinical significance: As DMTOSU is a double-ring-opening antishrinking oxaspiro monomer, its incorporation in TP-DBR would result in dimensionally accurate and stable dentures without endangering the biocompatibility in the prospective years.

  1. Ata SO, Yavuzyilmaz H. In vitro comparison of the cytotoxicity of acetal resin, heat-polymerized resin, and autopolymerized resin as denture base materials. J Biomed Mater Res B Appl Biomater 2009;91(2):905–909. DOI: 10.1002/jbm.b.31473.
  2. Kojima N, Yamada M, Paranjpe A, et al. Restored viability and function of dental pulp cells on poly-methylmethacrylate (PMMA)-based dental resin supplemented with N-acetyl cysteine (NAC). Dent Mater 2008;24(12):1686–1693. DOI: 10.1016/
  3. Tay LY, Herrera DR, Quishida CC, et al. Effect of water storage and heat treatment on the cytotoxicity of soft liners. Gerodontology 2012;29(2):275–280. DOI: 10.1111/j.1741-2358.2011.00463.x.
  4. Att W, Yamada M, Kojima N, et al. N-Acetyl cysteine prevents suppression of oral fibroblast function on poly(methylmethacrylate) resin. Acta Biomater 2009;5(1):391–398. DOI: 10.1016/j.actbio.2008.07.021.
  5. Yamada M, Kojima N, Att W, et al. N-Acetyl cysteine restores viability and function of rat odontoblast-like cells impaired by polymethylmethacrylate dental resin extract. Redox Rep 2009;14(1):13–22. DOI: 10.1179/135100009X392430.
  6. Bural C, Aktaş E, Deniz G, et al. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles. J Appl Oral Sci 2011;19(4):306–312. DOI: 10.1590/s1678-77572011005000002.
  7. Chaves CA, Machado AL, Vergani CE, et al. Cytotoxicity of denture base and hard chairside reline materials: a systematic review. J Prosthet Dent 2012;107(2):114–127. DOI: 10.1016/S0022-3913(12)60037-7.
  8. Ebrahimi Saravi M, Vojdani M, Bahrani F. Evaluation of cellular toxicity of three denture base acrylic resins. J Dent (Tehran) 2012;9(4):180–188. PMID: 23323179; PMCID: PMC3536452.
  9. Bural C, Aktaş E, Deniz G, et al. Effect of post-polymerization heat-treatments on degree of conversion, leaching residual MMA and in vitro cytotoxicity of autopolymerizing acrylic repair resin. Dent Mater 2011;27(11):1135–1143. DOI: 10.1016/
  10. Fisher AA. Allergic sensitization of the skin and oral mucosa to acrylic denture materials. J Am Med Assoc 1954;156(3):238–242. DOI: 10.1001/jama.1954.02950030030010.
  11. Ali A, Reynolds AJ, Walker DM. The burning mouth sensation related to the wearing of acrylic dentures: an investigation. Br Dent J 1986;161(12):444–447. DOI: 10.1038/sj.bdj.4806008.
  12. Lygre H, Solheim E, Gjerdet NR. Leaching from denture base materials in vitro. Acta Odontol Scand 1995;53(2):75–80. DOI: 10.3109/00016359509005950.
  13. Vallittu PK, Ruyter IE, Buykuilmaz S. Effect of polymerization temperature and time on the residual monomer content of denture base polymers. Eur J Oral Sci 1998;106(1):588–593. DOI: 10.1046/j.0909-8836.1998.eos106109.x.
  14. Kedjarune U, Charoenworaluk N, Koontongkaew S. Release of methyl methacrylate from heat-cured and autopolymerized resins: cytotoxicity testing related to residual monomer. Aust Dent J 1999;44(1):25–30. DOI: 10.1111/j.1834-7819.1999.tb00532.x.
  15. Lamb DJ, Ellis B, Priestley D. The effects of process variables on levels of residual monomer in autopolymerizing dental acrylic resin. J Dent 1983;11(1):80–88. DOI: 10.1016/0300-5712(83)90051-9.
  16. De Clerck JP. Microwave polymerization of acrylic resins used in dental prostheses. J Prosthet Dent 1987;57(5):650–659. DOI: 10.1016/0022-3913(87)90353-2.
  17. Urban VM, Machado AL, Oliveira RV, et al. Residual monomer of reline acrylic resins. Effect of water-bath and microwave post-polymerization treatments. Dent Mater 2007;23(3):363–368. DOI: 10.1016/
  18. Novais PM, Giampaolo ET, Vergani CE, et al. The occurrence of porosity in reline acrylic resins. Effect of microwave disinfection. Gerodontology 2009;26(1):65–71. DOI: 10.1111/j.1741-2358.2008.00251.x.
  19. Lefebvre CA, Schuster GS. Biocompatibility of visible light-cured resin systems in prosthodontics. J Prosthet Dent 1994;71(2):178–185. DOI: 10.1016/0022-3913(94)90028-0.
  20. Campanha NH, Pavarina AC, Giampaolo ET, et al. Cytotoxicity of hard chairside reline resins: effect of microwave irradiation and water bath postpolymerization treatments. Int J Prosthodont 2006;19(2):195–201. PMID: 16602371.
  21. Jorge JH, Giampaolo ET, Vergani CE, et al. Biocompatibility of denture base acrylic resins evaluated in culture of L929 cells. Effect of polymerization cycle and post-polymerization treatments. Gerodontology 2007;24(1):52–57. DOI: 10.1111/j.1741-2358.2007.00146.x.
  22. Schweikl H, Schmalz G. Toxicity parameters for cytotoxicity testing of dental materials in two different mammalian cell lines. Eur J Oral Sci 1996;104(3):292–299. DOI: 10.1111/j.1600-0722.1996.tb00080.x.
  23. de Andrade Lima Chaves C, Machado AL, Vergani CE, et al. Cytotoxicity of denture base and hard chairside reline materials: a systematic review. J Prosthet Dent 2012;107(2):114–127. DOI: 10.1016/S0022-3913(12)60037-7.
  24. Hensten-Pettersen A, Wictorin L. The cytotoxicity effect of denture base polymers. Acta Odontol Scand 1981;39(2):101–106. DOI: 10.3109/00016358109162267.
  25. Schuster GS, Lefebvre CA, Dirksen TR, et al. Relationships between denture base resin cytotoxicity and cell lipid metabolism. Int J Prosthodont 1995;8(6):580–586. PMID: 8595119.
  26. Sheridan PJ, Koka S, Ewoldsen NO, et al. Cytotoxicity of denture base resins. Int J Prosthodont 1997;10(1):73–77. PMID: 9484073.
  27. Jorge JH, Giampaolo ET, Vergani CE, et al. Cytotoxicity of denture base resins: effect of water bath and microwave post-polymerization heat treatments. Int J Prosthodont 2004;17(3):340–344. PMID: 15237883.
  28. Ajay R, Suma K, SreeVarun M, et al. Evaluation of in vitro cytotoxicity of heat-cure denture base resin processed with a dual-reactive cycloaliphatic monomer. J Contemp Dent Pract 2019;20(11):1279–1285. PMID: 31892679.
  29. Ajay R, Suma K, Ali SA. Monomer modifications of denture base acrylic resin: a systematic review and meta-analysis. J Pharm Bioallied Sci 2019;11(Suppl. 2):S112–S125. DOI: 10.4103/JPBS.JPBS_34_19.
  30. Sakai S, Kiyohara Y, Itoh K, et al. Synthesis of cyclic thioncarbonates and spiroorthocarbonates from bis (tributyltin) alkylene glycolates and carbon disulfide. J Org Chem 1970;35(7):2347–2350. DOI: 10.1021/jo00832a053.
  31. Ajay R, Rakshagan V, Sreevarun M, et al. Copolymerization of ring-opening oxaspiro comonomer with denture base acrylic resin by free radical/cationic hybrid polymerization. J Pharm Bioallied Sci 2021;13(Suppl. 1):S527–S531. DOI: 10.4103/jpbs.JPBS_582_20.
  32. Ajay R, Rakshagan V, Ganeshkumar R, et al. Synthesis and characterization of a ring-opening oxaspiro comonomer by a novel catalytic method for denture base resins. J Pharm Bioallied Sci 2021;13(Suppl. 1):S521–S526. DOI: 10.4103/jpbs.JPBS_524_20.
  33. Ajay R, Suma K, Arulkumar S, et al. Histocompatibility of novel cycloaliphatic comonomer in heat-cured denture base acrylic resin: histomorphometric analysis in rats. J Pharm Bioallied Sci 2020;12(Suppl. 1):S453–S461. DOI: 10.4103/jpbs.JPBS_139_20.
  34. Meister LMB, Kovalik AC, Pellissari CV, et al. Effect of post-polymerization heat treatment on a denture base acrylic resin: histopathological analysis in rats. Int J Dentistry Oral Sci 2015;S2:1–7. DOI: 10.19070/2377-8075-SI02001.
  35. Kapur K, Shklar G. The effect of complete dentures on alveolar mucosa. J Prosthet Dent 1963;13:1030–1037. DOI: 10.1016/0022-3913(63)90256-7.
  36. Ostlund SG. Effects of complete dentures on gum tissue. A histological/histopathological investigation. Acta Odontol Stand 1958;16(1):1–14. DOI: 10.3109/00016355809028181.
  37. Ayaz EA, Durkan R, Koroglu A, et al. Comparative effect of different polymerization techniques on residual monomer and hardness properties of PMMA-based denture resins. J Appl Biomater Funct Mater 2014;12(3):228–233. DOI: 10.5301/jabfm.5000199.
  38. Bartoloni JA, Murchison DF, Wofford DT, et al. Degree of conversion in denture base materials for varied polymerization techniques. J Oral Rehabil 2000;27(6):488–493. DOI: 10.1046/j.1365-2842.2000.00536.x.
  39. Bailey WJ, Endo T. Synthesis of monomers that expand on polymerization. Synthesis and polymerization of 3,9-dimethylene-1,5,7,11- tetraoxaspiro[5.5]undecane. J Polym Sci Pol Chem 1976;14:1735–1741. DOI: 10.1002/POL.1976.170140713.
  40. Watson IB, MacDonald DG. Oral mucosa and complete dentures. J Prosthet Dent 1982;47(2):133–140. DOI: 10.1016/0022-3913(82) 90176-7.
  41. Maruo Y, Sato T, Hara T, et al. The effect of diabetes mellitus on the expression of argyrophilic nucleolar organizer regions (AgNORs) in mucosal epithelium under experimental denture bases in rats. J Oral Pathol Med 2003;32(3):171–175. DOI: 10.1034/j.1600-0714.2003.00066.x.
  42. Endo T, Bailey WJ. Synthesis and radical ring-opening polymerization of spiro o-carbonates. J Polym Sci Pol Chem 1975;13(11):2525–2530. DOI: 10.1002/pol.1975.170131110.
  43. Jani RM, Bhargava K. A histologic comparison of palatal mucosa before and after wearing complete dentures. J Prosthet Dent 1976;36(3):254–260. DOI: 10.1016/0022-3913(76)90179-7.
  44. Sharry JJ. Complete denture prosthodontics. 2nd ed. New York: McGraw-Hill Book Company, Inc.; 1962. p. 21.
  45. Turck D. A histologic comparison of the edentulous denture and non-denture bearing tissues. J Prosthet Dent 1965;15:419–434. DOI: 10.1016/s0022-3913(65)80010-5.
  46. Lee H, Yu A, Johnson CC, et al. Fabrication of a multi-applicable removable intraoral denture system for rodent research. J Oral Rehabil 2011;38(9):686–690. DOI: 10.1111/j.1365-2842.2011.02206.x.
  47. Barclay SC, MacDonald DG, Watson IB. The effect of diet on palatal prosthetic coverage in rats. J Dent 1997;25(1):71–78. DOI: 10.1016/0300-5712(95)00115-8.
  48. Tsuruoka M, Ishizaki K, Sakurai K, et al. Morphological and molecular changes in denture-supporting tissues under persistent mechanical stress in rats. J Oral Rehabil 2008;35(12):889–897. DOI: 10.1111/j.1365-2842.2008.01883.x.
  49. Meister LMB, Bail M, Pellissari CVG, et al. Description of a rat palatal acrylic plate that can be relined. J Prosthodont 2015;24:562–568. DOI: 10.1111/jopr.12247.
  50. Barclay SC, MacDonald DG, Watson IB. The effect of chairside relining materials on rat palatal mucosa. J Dent 1997;25(3-4):251–255. DOI: 10.1016/s0300-5712(96)00005-x.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.