The Journal of Contemporary Dental Practice

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 23 , ISSUE 1 ( January, 2022 ) > List of Articles


Cytogenetics in Oral Cancer: A Comprehensive Update

Vanishri C Haragannavar, Elham A Khudhayr, Marwah H Matari, Wahba A Elagi, Neethi Gujjar

Keywords : Conventional cytogenetics, Fluorescent in situ hybridization, Microarray techniques, Molecular cytogenetics, Next-generation sequencing, Oral cancer

Citation Information : Haragannavar VC, Khudhayr EA, Matari MH, Elagi WA, Gujjar N. Cytogenetics in Oral Cancer: A Comprehensive Update. J Contemp Dent Pract 2022; 23 (1):123-131.

DOI: 10.5005/jp-journals-10024-3223

License: CC BY-NC 4.0

Published Online: 21-05-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: To evaluate the application of cytogenetic techniques in determining the diagnosis, prognosis, and therapeutics in oral cancer. Background: Genetic aberrations that play an important role in oral oncogenesis demand substantial research for in-depth characterization of the tumor. Cytogenetic techniques have the potential to detect these aberrations. This review highlights about various cytogenetic approaches in cancer and how these findings support its application in the field of oral oncology. Methods: Google scholar search was done for articles on cancer cytogenetics, and in particular, PubMed database was queried for articles published from 2015 to 2020 using keywords cytogenetics, chromosomal aberrations, conventional cytogenetics, karyotyping, banding techniques, molecular cytogenetics, fluorescent in situ hybridization, spectral karyotyping, comparative genomic hybridization, multiplex ligation probe analysis, and next-generation sequencing (NGS) in oral cancer. Abstracts were reviewed, and relevant full text was accessed to extract the cytogenetic findings in oral cancer. Results: Data regarding various cytogenetic approaches from conventional to molecular techniques have been published in oral cancer. They convey a highly complex cytogenetic finding from gross chromosomal aberrations to specific gene mutations in oral cancer. Conclusion: Crucial information in the development and progression of oral cancer is achieved through cytogenetic findings in particular with the molecular cytogenetic techniques. Novel technologies like NGS have emerged in recent years that hold promise in the detection of these alterations more efficiently. Clinical significance: An appraisal of cytogenetic analysis in oral cancer helps to determine the diagnosis and the most important prognosticators. It assists in building targeted therapies for patient benefit.

  1. Ali J, Sabiha B, Jan HU, et al. Genetic etiology of oral cancer. Oral Oncol 2017;70:23–28. DOI: 10.1016/j.oraloncology.2017.05.004.
  2. Jain AK, Singh D, Dubey K, et al. Chromosomal aberrations. In: Mutagenicity: assays and applications. Academic Press; 2018. p. 69–92.
  3. Janssen A, van der Burg M, Szuhai K, et al. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 2011;333(6051):1895–1898. DOI: 10.1126/science.1210214.
  4. Ramos-García P, Ruiz-Ávila I, Gil-Montoya JA, et al. Relevance of chromosomal band 11q13 in oral carcinogenesis: an update of current knowledge. Oral Oncol 2017;72:7–16. DOI: 10.1016/j.oraloncology.2017.04.016.
  5. Albertson DG. Gene amplification in cancer. Trends Genet 2006;22(8):447–455. DOI: 10.1016/j.tig.2006.06.007.
  6. Hovhannisyan G, Harutyunyan T, Aroutiounian R. Micronuclei and what they can tell us in cytogenetic diagnostics. Curr Genet Med Rep 2018;6(4):144–154. DOI: 10.1007/s40142-018-0149-6.
  7. Ribeiro IP, Melo JB, Carreira IM. Cytogenetics and cytogenomics evaluation in cancer. Int J Mol Sci 2019;20(19):4711. DOI: 10.3390/ijms20194711.
  8. Ponnuraj KT. Cytogenetic techniques in diagnosing genetic disorders. In: Advances in the study of genetic disorders. Croatia InTech; 2011. p. 45–64.
  9. Kannan TP, Zilfalil BA. Cytogenetics: past, present and future. Malays J Med Sci MJMS 2009;16(2):4. PMID: 22589651.
  10. Giersch ABS. Introduction to cytogenetics. 2014. p. 3304–3310.
  11. Ferguson-Smith MA. History and evolution of cytogenetics. Mol Cytogenet 2015;8(1):1–8. DOI: 10.1186/s13039-015-0125-8.
  12. Wan TS. Cancer cytogenetics: An introduction. Cancer Cytogenetics. 2017:1–10. DOI: 10.1007/978-1-4939-6703-2_1.
  13. Dutta UR. The history of human cytogenetics in India—a review. Gene 2016;589(2):112–117. DOI: 10.1016/j.gene.2016.01.052.
  14. Hassold T. Human cytogenetics and human chromosome abnormalities. In: Encyclopedia of genetics, genomics, proteomics and bioinformatics. 2004.
  15. Liehr T, Othman MA, Rittscher K, et al. The current state of molecular cytogenetics in cancer diagnosis. Expert Rev Mol Diagn 2015;15(4):517–526. DOI: 10.1586/14737159.2015.1013032.
  16. Mark HF, Jenkins R, Miller WA. Current applications of molecular cytogenetic technologies. Ann Clin Lab Sci 1997;27(1):47–56. PMID: 8997457.
  17. Sandberg AA, Meloni-Ehrig AM. Cytogenetics and genetics of human cancer: methods and accomplishments. Cancer Genet Cytogenet 2010;203(2):102–126. DOI: 10.1016/j.cancergencyto.2010.10.004.
  18. Das K, Tan P. Molecular cytogenetics: recent developments and applications in cancer. Clin Genet 2013;84(4):315–325. DOI: 10.1111/cge.12229.
  19. Patterns of chromosomal aberrations in solid tumors. In: Chromosomal instability in cancer cells. 2015. p. 115–142.
  20. Cooley LD, Wilson KS. The cytogenetics of solid tumors. In: The principles of clinical cytogenetics. Springer, New York, NY; 2013. p. 371–411.
  21. Wan TS, Ma ES. Molecular cytogenetics: an indispensable tool for cancer diagnosis. Chang Gung Med J 2012;35(2):96–110. DOI: 10.4103/2319-4170.106161.
  22. Mrózek K, Harper DP, Aplan PD. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009;23(5):991–1010. DOI: 10.1016/j.hoc.2009.07.001.
  23. Nanjangud G, Amarillo I, Rao PN. Solid tumor cytogenetics: current perspectives. Clin Lab Med 2011;31(4):785–811. DOI: 10.1016/j.cll.2011.07.007.
  24. Stangl C, de Blank S, Renkens I, et al. Partner independent fusion gene detection by multiplexed CRISPR-Cas9 enrichment and long read nanopore sequencing. Nat Commun 2020;11(1):1–4. DOI: 10.1038/s41467-020-16641-7.
  25. Wang N. Methodologies in cancer cytogenetics and molecular cytogenetics. Am J Med Genet 2002;115(3):118–124. DOI: 10.1002/ajmg.10687.
  26. Varella-Garcia M. Molecular cytogenetics in solid tumors: laboratorial tool for diagnosis, prognosis, and therapy. Oncologist 2003;8(1): 45–58. DOI: 10.1634/theoncologist.8-1-45.
  27. Ratan ZA, Zaman SB, Mehta V, et al. Application of fluorescence in situ hybridization (FISH) technique for the detection of genetic aberration in medical science. Cureus 2017;9(6):e1325. DOI: 10.7759/cureus.1325.
  28. Bayani JM, Squire JA. Applications of SKY in cancer cytogenetics. Cancer Invest 2002;20(3):373–386. DOI: 10.1081/cnv-120001183.
  29. Mao X, Young BD, Lu YJ. The application of single nucleotide polymorphism microarrays in cancer research. Curr Genomics 2007;8(4):219–228. DOI: 10.2174/138920207781386924.
  30. Hömig-Hölzel C, Savola S. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol 2012;21(4):189–206. DOI: 10.1097/PDM.0b013e3182595516.
  31. Kozlowski P, Jasinska AJ, Kwiatkowski DJ. New applications and developments in the use of multiplex ligation-dependent probe amplification. Electrophoresis 2008;29(23):4627–4636. DOI: 10.1002/elps.200800126.
  32. Kamps R, Brandão RD, Bosch BJ, et al. Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. Int J Mol Sci 2017;18(2):308. DOI: 10.3390/ijms18020308.
  33. Rizzo G, Black M, Mymryk JS, et al. Defining the genomic landscape of head and neck cancers through next-generation sequencing. Oral Dis 2015;21(1):e11–e24. DOI: 10.1111/odi.12246.
  34. Sakamoto Y, Sereewattanawoot S, Suzuki A. A new era of long-read sequencing for cancer genomics. J Human Genet 2020;65(1):3–10. DOI: 10.1038/s10038-019-0658-5.
  35. Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012;2012:251364. DOI: 10.1155/2012/251364.
  36. Kyrodimos E, Chrysovergis A, Mastronikolis N, et al. Impact of chromosome 9 numerical imbalances in oral squamous cell carcinoma: a pilot grid-based centromere analysis. Diagnostics 2020;10(7):501. DOI: 10.3390/diagnostics10070501.
  37. Hema KN, Smitha T, Sheethal HS, et al. Epigenetics in oral squamous cell carcinoma. J Oral Maxillofac Pathol JOMFP 2017;21(2):252. DOI: 10.4103/jomfp.JOMFP_150_17.
  38. Papanikolaou VS, Kyrodimos E, Tsiambas E, et al. Chromosomal instability in oral squamous cell carcinoma. J BUON 2018;23(6):1580–1582. PMID: 30610780.
  39. Bavle RM, Venugopal R, Konda P, et al. Molecular classification of oral squamous cell carcinoma. J Clin Diagn Res 2016;10(9):ZE18. DOI: 10.7860/JCDR/2016/19967.8565.
  40. Ribeiro IP, Rodrigues JM, Mascarenhas A, et al. Cytogenetic, genomic, and epigenetic characterization of the HSC-3 tongue cell line with lymph node metastasis. J Oral Sci 2018;60(1):70–81. DOI: 10.2334/josnusd.16-0811.
  41. Jyoti S, Naz F, Khan S, et al. Detection of aneugenicity and clastogenicity in buccal epithelial cells of pan masala and gutkha users by pan-centromeric FISH analysis. Mutagenesis 2015;30(2): 263–267. DOI: 10.1093/mutage/geu067.
  42. Wangsa D, Chowdhury SA, Ryott M, et al. Phylogenetic analysis of multiple FISH markers in oral tongue squamous cell carcinoma suggests that a diverse distribution of copy number changes is associated with poor prognosis. Int J Cancer 2016;138(1):98–109. DOI: 10.1002/ijc.29691.
  43. Noorlag R, Boeve K, Witjes MJ, et al. Amplification and protein overexpression of cyclin D1: predictor of occult nodal metastasis in early oral cancer. Head Neck 2017;39(2):326–333. DOI: 10.1002/hed.24584.
  44. Kakuya T, Mori T, Yoshimoto S, et al. Prognostic significance of gene amplification of ACTN4 in stage I and II oral tongue cancer. Int J Oral Maxillofac Surg 2017;46(8):968–976. DOI: 10.1016/j.ijom.2017.03.001.
  45. Costa V, Kowalski LP, Coutinho-Camillo CM, et al. EGFR amplification and expression in oral squamous cell carcinoma in young adults. Int J Oral Maxillofac Surg 2018;47(7):817–823. DOI: 10.1016/j.ijom.2018.01.002.
  46. Chien HT, Cheng SD, Liao CT, et al. Amplification of the EGFR and CCND1 are coordinated and play important roles in the progression of oral squamous cell carcinomas. Cancers 2019;11(6):760. DOI: 10.3390/cancers11060760.
  47. Cierpikowski P, Lis-Nawara A, Gajdzis P, et al. PDGFRα/HER2 and PDGFRα/p53 co-expression in oral squamous cell carcinoma. Anticancer Res 2018;38(2):795–802. DOI: 10.21873/anticanres.12286.
  48. Mastronikolis NS, Tsiambas E, Fotiades PP, et al. Numerical imbalances of chromosome 7 in oral squamous cell carcinoma. Anticancer Res 2018;38(4):2339–2342. DOI: 10.21873/anticanres.12480.
  49. Chrysovergis A, Papanikolaou V, Mastronikolis N, et al. Chromosome 17 In situ hybridization grid-based analysis in oral squamous cell carcinoma. Anticancer Res 2020;40(7):3759–3764. DOI: 10.21873/anticanres.14365.
  50. Zedan W, Mourad MI, Abd El-Aziz SM, et al. Cytogenetic significance of chromosome 17 aberrations and P53 gene mutations as prognostic markers in oral squamous cell carcinoma. Diagn Pathol 2015;10(1):1–9. DOI: 10.1186/s13000-015-0232-1.
  51. Wang SJ, Asthana S, van Zante A, et al. Establishment and characterization of an oral tongue squamous cell carcinoma cell line from a never-smoking patient. Oral Oncol 2017;69:1–10. DOI: 10.1016/j.oraloncology.2017.03.020.
  52. Predominant Rab-GTPase amplicons contributing to oral squamous cell carcinoma progression to metastasis. Oncotarget 2015;6(26):21950. DOI: 10.18632/oncotarget.4277.
  53. Chen C, Zhang Y, Loomis MM, et al. Genome-wide loss of heterozygosity and DNA copy number aberration in HPV-negative oral squamous cell carcinoma and their associations with disease-specific survival. PLoS One 2015;10(8):e0135074. DOI: 10.1371/journal.pone.0135074.
  54. Vincent–Chong VK, Salahshourifar I, Razali R, et al. Immortalization of epithelial cells in oral carcinogenesis as revealed by genome-wide array comparative genomic hybridization: a meta-analysis. Head Neck 2016;38(S1):E783–E797. DOI: 10.1002/hed.24102.
  55. van Kempen PM, Noorlag R, Braunius WW, et al. Clinical relevance of copy number profiling in oral and oropharyngeal squamous cell carcinoma. Cancer Med 2015;4(10):1525–1535. DOI: 10.1002/cam4.499.
  56. Ribeiro IP, Caramelo F, Marques F, et al. WT1, MSH6, GATA5 and PAX5 as epigenetic oral squamous cell carcinoma biomarkers-a short report. Cell Oncol 2016;39(6):573–582. DOI: 10.1007/s13402-016-0293-5.
  57. Sharma V, Nandan A, Sharma AK, et al. Signature of genetic associations in oral cancer. Tumor Biol 2017;39(10):1010428317725923. DOI: 10.1177/1010428317725923.
  58. Nakagaki T, Tamura M, Kobashi K, et al. Targeted next-generation sequencing of 50 cancer-related genes in Japanese patients with oral squamous cell carcinoma. Tumor Biol 2018;40(9):1010428318800180. DOI: 10.1177/1010428318800180.
  59. Ma J, Fu Y, Tu YY, et al. Mutation allele frequency threshold does not affect prognostic analysis using next-generation sequencing in oral squamous cell carcinoma. BMC Cancer 2018;18(1):758. DOI: 10.1186/s12885-018-4481-8.
  60. Kim S, Lee JW, Park YS. The application of next-generation sequencing to define factors related to oral cancer and discover novel biomarkers. Life 2020;10(10):228. DOI: 10.3390/life10100228.
  61. Liu L, Chen J, Cai X, et al. Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surg Oncol 2019;31:90–97. DOI: 10.1016/j.suronc.2019.09.001.
  62. Ketabat F, Pundir M, Mohabatpour F, et al. Controlled drug delivery systems for oral cancer treatment—current status and future perspectives. Pharmaceutics 2019;11(7):302. DOI: 10.3390/pharmaceutics11070302.
  63. Koole K, van Kempen PM, Swartz JE, et al. Fibroblast growth factor receptor 3 protein is overexpressed in oral and oropharyngeal squamous cell carcinoma. Cancer Med 2016;5(2):275–284. DOI: 10.1002/cam4.595.
  64. Karunakaran K, Muniyan R. Genetic alterations and clinical dimensions of oral cancer: a review. Mol Biol Rep 2020;47(11):9135–9148. DOI: 10.1007/s11033-020-05927-0.
  65. Park SJ, Saito-Adachi M, Komiyama Y, et al. Advances, practice, and clinical perspectives in high-throughput sequencing. Oral Dis 2016;22(5):353–364. DOI: 10.1111/odi.12403.
  66. Tseng HH, Tseng YK, You JJ, et al. Next-generation sequencing for microRNA profiling: microRNA-21-3p promotes oral cancer metastasis. Anticancer Res 2017;37(3):1059–1066. DOI: 10.21873/anticanres.11417.
  67. Jayaprakash C, Varghese VK, Jayaram P, et al. Relevance and actionable mutational spectrum in oral squamous cell carcinoma. J Oral Pathol Med 2020;49(5):427–434. DOI: 10.1111/jop.12985.
  68. Singh N, Sahu DK, Tripathi RK, et al. Differentially expressed full-length, fusion and novel isoforms transcripts-based signature of well-differentiated keratinized oral squamous cell carcinoma. Oncotarget 2020;11(34):3227. DOI: 10.18632/oncotarget.27693.
  69. Aminuddin A, Ng PY, Leong CO, et al. Mitochondrial DNA alterations may influence the cisplatin responsiveness of oral squamous cell carcinoma. Sci Rep 2020;10(1):1–7. DOI: 10.1038/s41598-020-64664-3.
  70. Ramos RT, Sodré CS, de Sousa PM, et al. High-throughput nucleotide sequencing for bacteriome studies in oral squamous cell carcinoma: a systematic review. Oral Maxillofac Surg 2020;24(4):387–401. DOI: 10.1007/s10006-020-00873-4.
  71. Qi Z, Barrett T, Parikh AS, et al. Single-cell sequencing and its applications in head and neck cancer. Oral Oncol 2019;99:104441. DOI: 10.1016/j.oraloncology.2019.104441.
  72. Huang LY, Hsieh YP, Wang YY, et al. Single-cell analysis of different stages of oral cancer carcinogenesis in a mouse model. Int J Mol Sci 2020;21(21):8171. DOI: 10.3390/ijms21218171.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.