The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 23 , ISSUE 3 ( March, 2022 ) > List of Articles

REVIEW ARTICLE

Influence of Human and Bacterial Enzymes on Resin Restorations: A Review

Mohammed A Jafer, Amnah AQ Qadiri, Naseem A Mtwam, Aeshah H Hakami, Ahlam AM Mowkly

Citation Information : Jafer MA, Qadiri AA, Mtwam NA, Hakami AH, Mowkly AA. Influence of Human and Bacterial Enzymes on Resin Restorations: A Review. J Contemp Dent Pract 2022; 23 (3):371-377.

DOI: 10.5005/jp-journals-10024-3250

License: CC BY-NC 4.0

Published Online: 24-06-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Background: Esthetic satisfaction has been a prime concern for patients. This has led to a surge in the development of esthetic restorations and dental composites in the field of restorative dentistry over the past decade. Resins are the most preferred restorative material. However, their failure rate was observed to be high. Aim: This review is aimed for clinician, discussing the influence of human and bacterial enzymes on resin restorations. Review results: Composite restoration failure is multifactorial with an interplay of mechanical functions such as masticatory forces and abrasion with biological factors such as host modulated and bacterial enzymes. Salivary esterases and bacterial esterases act on the ester-link bond of resin restoration to form byproducts of methacrylic acid and Bis-hydroxy-propoxy-phenyl-propane. Salivary enzymes form microgaps between the resin–tooth interface and provide a suitable environment for bacterial growth. Bacteria colonize the resin–tooth interface to weaken the resin bond strength. The presence of bacteria draws neutrophils into the hybrid layer. The activation and degranulation of neutrophils leads to enzyme secretions that act on bacteria. However, this can also have adverse effects on resin restoration. Acids prompt the activation of matrix metalloproteinases (MMPs). Proteinases secreted by MMPs uncoil the collagen fibrils of the dentin matrix and degrade tooth structure. The salivary esterases, bacterial esterases, neutrophils, and MMPs work synergistically to degrade dental resin material, resin–tooth interface, and dentin. This causes failure of dental resin restorations and secondary caries formation. Conclusion: Biological degradation of resin restorations is inevitable irrespective of the material and techniques used. Salivary esterases such as cholesterol esterase and pseudocholinesterase and cariogenic bacterial esterase can degrade dental resin, weakening the hybrid layer at the resin–tooth interface, affecting the bond strength, and causing failure. Ester-free resin and incorporation of antimicrobial materials, esterase, and MMP inhibitors are strategies that could ameliorate degradation of the restoration.


PDF Share
  1. Zero DT, Fontana M, Martínez-Mier EA, et al. The biology, prevention, diagnosis and treatment of dental caries: scientific advances in the United States. J Am Dent Assoc 2009;140:25S–34S. DOI: 10.14219/jada.archive.2009.0355.
  2. Bharti R, Wadhwani KK, Tikku AP, et al. Dental amalgam: an update. J Conserv Dent 2010;13(4):204–208. DOI: 10.4103/0972-0707.73380.
  3. Ilie N, Hickel R. Resin composite restorative materials. Aust Dent J 2011;56:59–66. DOI: 10.1111/j.1834-7819.2010.01296.x.
  4. Nicholson JW, Sidhu SK, Czarnecka B. Enhancing the mechanical properties of glass-ionomer dental cements: a review. Materials 2020;13(11):2510. DOI: 10.3390/ma13112510.
  5. Cenci MS, Piva E, Potrich F, et al. Microleakage in bonded amalgam restorations using different adhesive materials. Braz Dent J 2004;15(1):13–18. DOI: 10.1590/s0103-64402004000100003.
  6. Berg JH. Glass ionomer cements. Pediatr Dent 2002;24(5):430–438. PMID: 12412957.
  7. Lynch CD, Opdam NJ, Hickel R, et al. Guidance on posterior resin composites: Academy of Operative Dentistry–European section. J Dent 2014;42(4):377–383. DOI: 10.1016/j.jdent.2014.01.009.
  8. Nahsan FPS, Mondelli RFL, Franco EB, et al. Clinical strategies for esthetic excellence in anterior tooth restorations: understanding color and composite resin selection. J Appl Oral Sci 2012;20:151–156. DOI: 10.1590/s1678-77572012000200005.
  9. Ferracane JL. Resin composite—state of the art. Dent Mater 2011;27(1):29–38. DOI: 10.1016/j.dental.2010.10.020.
  10. Ruyter IE, Sjoevik IJ. Composition of dental resin and composite materials. Acta Odontol Scand 1981;39(3):133–146. DOI: 10.3109/00016358109162272.
  11. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997;105(2):97–116. DOI: 10.1111/j.1600-0722.1997.tb00188.x.
  12. Suzuki S, Ori T, Saimi Y. Effects of filler composition on flexibility of microfilled resin composite. J Biomed Mater Res Part B Appl Biomater 2005;74(1):547–552. DOI: 10.1002/jbm.b.30235.
  13. Finer Y, Santerre JP. Influence of silanated filler content on the biodegradation of bisGMA/TEGDMA dental composite resins. J Biomed Mater Res Part A 2007;81(1):75–84. DOI: 10.1002/jbm.a.31004.
  14. Bayne SC. Beginnings of the dental composite revolution. J Am Dent Assoc 2013;144(8):880–884. DOI: 10.14219/jada.archive.2013.0205.
  15. Karabela MM, Sideridou ID. Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites. Dent Mater 2008;24(12):1631–1639. DOI: 10.1016/j.dental.2008.02.021.
  16. Kwon T, Bagheri R, Kim YK, et al. Cure mechanisms in materials for use in esthetic dentistry. J Investig Clin Dent 2012;3(1):3–16. DOI: 10.1111/j.2041-1626.2012.00114.x.
  17. Lopes GC, Thys DG, Klaus P, et al. Enamel acid etching: a review. Compend Contin Educ Dent (Jamesburg, NJ 1995) 2007;28(1):18–24. PMID: 17278628.
  18. Lührs A-K, Guhr S, Schilke R, et al. Shear bond strength of self-etch adhesives to enamel with additional phosphoric acid etching. Oper Dent 2008;33(2):155–162. DOI: 10.2341/07-63.
  19. Schulze KA, Oliveira SA, Wilson RS, et al. Effect of hydration variability on hybrid layer properties of a self-etching versus an acid-etching system. Biomaterials 2005;26(9):1011–1018. DOI: 10.1016/j.biomaterials.2004.03.037.
  20. Albaladejo A, Osorio R, Toledano M, et al. Hybrid layers of etch-and-rinse versus self-etching adhesive systems. Med Oral Patol Oral Cir Bucal 2010;15(1):e112–e118. DOI: 10.4317/medoral.15.e112.
  21. Teixeira EC, Bayne SC, Thompson JY, et al. Shear bond strength of self-etching bonding systems in combination with various composites used for repairing aged composites. J Adhes Dent 2005;7(2):159. PMID: 16052765.
  22. Perdigao J, Geraldeli S, Hodges JS. Total-etch versus self-etch adhesive: effect on postoperative sensitivity. J Am Dent Assoc 2003;134(12):1621–1629. DOI: 10.14219/jada.archive.2003.0109.
  23. Marghalani HY. Resin-based dental composite materials. In: Antoniac IV, editor. Handbook of bioceramics and biocomposites. Cham: Springer International Publishing; 2016. p. 357–405.
  24. da Rosa Rodolpho PA, Cenci MS, Donassollo TA, et al. A clinical evaluation of posterior composite restorations: 17-year findings. J Dent 2006;34(7):427–435. DOI: 10.1016/j.jdent.2005.09.006.
  25. Bernardo M, Luis H, Martin MD, et al. Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. J Am Dent Assoc 2007;138(6):775–783. DOI: 10.14219/jada.archive.2007.0265.
  26. Lohbauer U, Belli R, Ferracane JL. Factors involved in mechanical fatigue degradation of dental resin composites. J Dent Res 2013;92(7):584–591. DOI: 10.1177/0022034513490734.
  27. Ricci WA, Alfano P, Pamato S, et al. Mechanical degradation of different classes of composite resins aged in water, air, and oil. Biomed Res Int 2019;2019(6):1–7. DOI: 10.1155/2019/7410759.
  28. Chauncey HH, Lionetti F, Winer RA, et al. Enzymes of human saliva: I. The determination, distribution, and origin of whole saliva enzymes. J Dent Res 1954;33(3):321–334. DOI: 10.1177/00220345540330030501.
  29. Seligman AM, Nachlas MM. The colorimetric determination of lipase and esterase in human serum. J Clin Invest 1950;29(1):31–36. DOI: 10.1172/JCI102231.
  30. Rapp GW. The biochemistry of oral calculus the presence of carbonic anhydrase in human saliva. J Am Dent Assoc 1946;33:191–194. DOI: 10.14219/jada.archive.1946.0047.
  31. Volker JF. Some observations on the action of saliva on sucrose. J Dent Res. Am Assoc Dent Res 1950;29(5):680–681. ISSN0022-0345.
  32. Larsen IB, Munksgaard EG. Effect of human saliva on surface degradation of composite resins. Eur J Oral Sci 1991;99(3):254–261. DOI: 10.1111/j.1600-0722.1991.tb01893.x.
  33. Finer Y, Santerre JP. Biodegradation of a dental composite by esterases: dependence on enzyme concentration and specificity. J Biomater Sci Polym Ed 2003;14(8):837–849. DOI: 10.1163/156856203768366558.
  34. Finer Y, Jaffer F, Santerre JP. Mutual influence of cholesterol esterase and pseudocholinesterase on the biodegradation of dental composites. Biomaterials 2004;25(10):1787–1793. DOI: 10.1016/j.biomaterials.2003.08.029.
  35. Spencer P, Ye Q, Misra A, et al. Proteins, pathogens, and failure at the composite-tooth interface. J Dent Res 2014;93(12):1243–1249. DOI: 10.1177/0022034514550039.
  36. Spencer P, Ye Q, Park J, et al. Adhesive/dentin interface: the weak link in the composite restoration. Ann Biomed Eng 2010;38(6):1989–2003. DOI: 10.1007/s10439-010-9969-6.
  37. Bourbia M, Finer Y. Biochemical stability and interactions of dental resin composites and adhesives with host and bacteria in the oral cavity: a review. J Can Dent Assoc 2018;84(1):1–7. PMID: 29513214.
  38. Hashimoto M, Tay FR, Ohno H, et al. SEM and TEM analysis of water degradation of human dentinal collagen. J Biomed Mater Res Part B Appl Biomater 2003;66(1):287–298. DOI: 10.1002/jbm.b.10560.
  39. Totiam P, Gonzalez-Cabezas C, Fontana MR, et al. A new in vitro model to study the relationship of gap size and secondary caries. Caries Res 2007;41(6):467–473. DOI: 10.1159/000107934.
  40. Gitalis R, Bae JH, Preston M, et al. Human neutrophils compromise the restoration-tooth interface. Acta Biomater 2020;117:283–293. DOI: 10.1016/j.actbio.2020.09.025.
  41. Sano H, Takatsu T, Ciucchi B, et al. Tensile properties of resin-infiltrated demineralized human dentin. J Dent Res 1995;74(4):1093–1102. DOI: 10.1177/00220345950740041001.
  42. Nagase H, Fushimi K. Elucidating the function of non catalytic domains of collagenases and aggrecanases. Connect Tissue Res 2008;49(3–4):169–174. DOI: 10.1080/03008200802151698.
  43. Sulkala M, Tervahartiala T, Sorsa T, et al. Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Arch Oral Biol 2007;52(2):121–127. DOI: 10.1016/j.archoralbio.2006.08.009.
  44. Martin-De Las Heras S, Valenzuela A, Overall CM. The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol 2000;45(9):757–765. DOI: 10.1016/s0003-9969(00)00052-2.
  45. Mazzoni A, Mannello F, Tay FR, et al. Zymographic analysis and characterization of MMP-2 and-9 forms in human sound dentin. J Dent Res 2007;86(5):436–440. DOI: 10.1177/154405910708600509.
  46. Huang B, Cvitkovitch DG, Santerre JP, et al. Biodegradation of resin–dentin interfaces is dependent on the restorative material, mode of adhesion, esterase or MMP inhibition. Dent Mater 2018;34(9): 1253–1262. DOI: 10.1016/j.dental.2018.05.008.
  47. Freund M, Munksgaard EC. Enzymatic degradation of BISGMA/TEGDMA-polymers causing decreased microhardness and greater wear in vitro. Eur J Oral Sci 1990;98(4):351–355. DOI: 10.1111/j.1600-0722.1990.tb00984.x.
  48. Cai K, Delaviz Y, Banh M, et al. Biodegradation of composite resin with ester linkages: identifying human salivary enzyme activity with a potential role in the esterolytic process. Dent Mater 2014;30(8): 848–860. DOI: 10.1016/j.dental.2014.05.031.
  49. Sutton LD, Froelich S, Hendrickson HS, et al. Cholesterol esterase catalyzed hydrolysis of mixed micellar thiophosphatidylcholines: a possible charge-relay mechanism. Biochemistry 1991;30(24): 5888–5893. DOI: 10.1021/bi00238a012.
  50. Santerre JP, Shajii L, Tsang H. Biodegradation of commercial dental composites by cholesterol esterase. J Dent Res 1999;78(8):1459–1468. DOI: 10.1177/00220345990780081201.
  51. Yourtee DM, Smith RE, Russo KA, et al. The stability of methacrylate biomaterials when enzyme challenged: kinetic and systematic 10.1002/1097-4636(20011215)57:4<522::aid-jbm1198>3.0.co;2-9.
  52. Ryhanen R, Narhi M, Puhakainen E, et al. Pseudocholinesterase activity and its origin in human oral fluid. J Dent Res 1983;62(1):20–23. DOI: 10.1177/00220345830620010501.
  53. Finer Y, Santerre JP. Salivary esterase activity and its association with the biodegradation of dental composites. J Dent Res 2004;83(1): 22–26. DOI: 10.1177/154405910408300105.
  54. Jaffer F, Finer Y, Santerre JP. Interactions between resin monomers and commercial composite resins with human saliva derived esterases. Biomaterials 2002;23(7):1707–1719. DOI: 10.1016/s0142-9612(01)00298-8.
  55. Shokati B, Tam LE, Santerre JP, et al. Effect of salivary esterase on the integrity and fracture toughness of the dentin-resin interface. J Biomed Mater Res Part B Appl Biomater 2010;94(1):230–237. DOI: 10.1002/jbm.b.31645.
  56. Hannas AR, Pereira JC, Granjeiro JM, et al. The role of matrix metalloproteinases in the oral environment. Acta Odontol Scand 2007;65(1):1–13. DOI: 10.1080/00016350600963640.
  57. Mazzoni A, Breschi L, Carrilho M, et al. A review of the nature, role, and function of dentin non-collagenous proteins. Part II: enzymes, serum proteins, and growth factors. Endod Top 2009;21(1):19–40. DOI: 10.1111/j.1601-1546.2012.00268.x.
  58. Mazzoni A, Pashley DH, Tay FR, et al. Immunohistochemical identification of MMP-2 and MMP-9 in human dentin: correlative FEI-SEM/TEM analysis. J Biomed Mater Res Part A 2009;88(3):697–703. DOI: 10.1002/jbm.a.31920.
  59. Boukpessi T, Menashi S, Camoin L, et al. The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials 2008;29(33):4367–4373. DOI: 10.1016/j.biomaterials.2008.07.035.
  60. Chung L, Dinakarpandian D, Yoshida N, et al. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J 2004;23(15):3020–3030. DOI: 10.1038/sj.emboj.7600318.
  61. Okada Y. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest 1995;72(3):311–322. PMID: 7898050.
  62. Moon PC, Weaver J, Brooks CN. Review of matrix metalloproteinases’ effect on the hybrid dentin bond layer stability and chlorhexidine clinical use to prevent bond failure. Open Dent J 2010;4:147–152. DOI: 10.2174/1874210601004010147.
  63. Garnero P, Ferreras M, Karsdal MA, et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res 2003;18(5):859–867. DOI: 10.1359/jbmr.2003.18.5.859.
  64. Tjäderhane L, Nascimento FD, Breschi L, et al. Strategies to prevent hydrolytic degradation of the hybrid layer—a review. Dent Mater 2013;29(10):999–1011. DOI: 10.1016/j.dental.2013.07.016.
  65. Breschi L, Mazzoni A, Nato F, et al. Chlorhexidine stabilizes the adhesive interface: a 2-year in vitro study. Dent Mater 2010;26(4): 320–325. DOI: 10.1016/j.dental.2009.11.153.
  66. Dionysopoulos D, Gerasimidou O, Papadopoulos C. Current modifications of dental adhesive systems for composite resin restorations: a review in literature. J Adhes Sci Technol 2021;36(5):1–16. DOI: 10.1080/01694243.2021.1924499.
  67. Mazzoni A, Nascimento FD, Carrilho M, et al. MMP activity in the hybrid layer detected with in situ zymography. J Dent Res 2012;91(5):467–472. DOI: 10.1177/0022034512439210.
  68. Carrilho MR. Can exogenous protease inhibitors control dentin matrix degradation? J Dent Res 2012;91(12):1099–1102. DOI: 10.1177/0022034512462399.
  69. Delima AJ, Van Dyke TE. Origin and function of the cellular components in gingival crevice fluid. 2003;31:55–76. DOI: 10.1034/j.1600-0757.2003.03105.x.
  70. Bender JS, Thang H, Glogauer M. Novel rinse assay for the quantification of oral neutrophils and the monitoring of chronic periodontal disease. J Periodontal Res 2006;41(3):214–220. DOI: 10.1111/j.1600-0765.2005.00861.x.
  71. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013;13(3):159–175. DOI: 10.1038/nri3399.
  72. Kruger P, Saffarzadeh M, Weber ANR, et al. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog 2015;11(3):e1004651. DOI: 10.1371/journal.ppat.1004651.
  73. Borregaard N. Neutrophils, from marrow to microbes. Immunity 2010;33(5):657–670. DOI: 10.1016/j.immuni.2010.11.011.
  74. Gitalis R, Zhou L, Marashdeh MQ, et al. Human neutrophils degrade methacrylate resin composites and tooth dentin. Acta Biomater 2019;88:325–331. DOI: 10.1016/j.actbio.2019.02.033.
  75. Wang X, Zhao J, Cai C, et al. A label-free quantitative proteomic analysis of mouse neutrophil extracellular trap formation induced by Streptococcus suis or phorbol myristate acetate (PMA). Front Immunol 2018;9:2615. DOI: 10.3389/fimmu.2018.02615.
  76. Kermanshahi S, Santerre JP, Cvitkovitch DG, et al. Biodegradation of resin-dentin interfaces increases bacterial microleakage. J Dent Res 2010;89(9):996–1001. DOI: 10.1177/0022034510372885.
  77. Svanberg M, Mjör IA, Ørstavik D. Mutans streptococci in plaque from margins of amalgam, composite, and glass-ionomer restorations. J Dent Res 1990;69(3):861–864. DOI: 10.1177/00220345900690030601.
  78. Van Dijken J, Persson S, Sjöström S. Presence of Streptococcus mutans and lactobacilli in saliva and on enamel, glass ionomer cement, and composite resin surfaces. Eur J Oral Sci 1991;99(1):13–19. DOI: 10.1111/j.1600-0722.1991.tb01017.x.
  79. Hansel C, Leyhausen G, Mai UEH, et al. Effects of various resin composite (co) monomers and extracts on two caries-associated micro-organisms in vitro. J Dent Res 1998;77(1):60–67. DOI: 10.1177/00220345980770010601.
  80. Montanaro L, Campoccia D, Rizzi S, et al. Evaluation of bacterial adhesion of Streptococcus mutans on dental restorative materials. Biomaterials 2004;25(18):4457–4463. DOI: 10.1016/j.biomaterials.2003.11.031.
  81. Beyth N, Bahir R, Matalon S, et al. Streptococcus mutans biofilm changes surface-topography of resin composites. Dent Mater 2008;24(6):732–736. DOI: 10.1016/j.dental.2007.08.003.
  82. Perry JA, Cvitkovitch DG, Lévesque CM. Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol Lett 2009;299(2):261–266. DOI: 10.1111/j.1574-6968.2009.01758.x.
  83. Bourbia M. Biodegradation of dental resin composites and adhesives by Streptococcus mutans: an in vitro study. 2013.
  84. Huang B, Siqueira WL, Cvitkovitch DG, et al. Esterase from a cariogenic bacterium hydrolyzes dental resins. Acta Biomater 2018;71:330–338. DOI: 10.1016/j.actbio.2018.02.020.
  85. Ito S, Hashimoto M, Wadgaonkar B, et al. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005;26(33):6449–6459. DOI: 10.1016/j.biomaterials.2005.04.052.
  86. Hashimoto M, Fujita S, Kaga M, et al. Effect of water on bonding of one-bottle self-etching adhesives. Dent Mater J 2008;27(2):172–178. DOI: 10.4012/dmj.27.172.
  87. Marashdeh MQ, Gitalis R, Levesque C, et al. Enterococcus faecalis hydrolyzes dental resin composites and adhesives. J Endod 2018;44(4):609–613. DOI: 10.1016/j.joen.2017.12.014.
  88. Morichi T, Sharpe ME, Reiter B. Esterases and other soluble proteins of some lactic acid bacteria. Microbiology 1968;53(3):405–414. DOI: 10.1099/00221287-53-3-405.
  89. SreeVidya G, Archana D, Prithika U, et al. Esterase like activity of Enterococcus faecalis and Lactobacillus casei on microhardness and weight loss of resin luting cements. Indian J Dent Res 2020;31(5):768. DOI: 10.4103/ijdr.IJDR_747_20.
  90. Yulianto HDK, Rinastiti M, Cune MS, et al. Biofilm composition and composite degradation during intra-oral wear. Dent Mater 2019;35(5):740–750. DOI: 10.1016/j.dental.2019.02.024.
  91. Gendron R, Grenier D, Sorsa T, et al. Inhibition of the activities of matrix metalloproteinases 2, 8, and 9 by chlorhexidine. Clin Diagnostic Lab Immunol 1999;6(3):437–439. DOI: 10.1128/CDLI.6.3.437-439.1999.
  92. Scaffa PMC, Vidal C de MP, Barros N, et al. Chlorhexidine inhibits the activity of dental cysteine cathepsins. J Dent Res 2012;91(4):420–425. DOI: 10.1177/0022034511435329.
  93. Anusavice KJ, Zhang N-Z, Shen C. Controlled release of chlorhexidine from UDMA-TEGDMA resin. J Dent Res 2006;85(10):950–954. DOI: 10.1177/154405910608501016.
  94. Silverman HG, Roberto FF. Understanding marine mussel adhesion. Mar Biotechnol 2007;9(6):661–681. DOI: 10.1007/s10126-007-9053-x.
  95. Kim BJ, Oh DX, Kim S, et al. Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 2014;15(5):1579–1585. DOI: 10.1021/bm4017308.
  96. Sabatini C, Pashley DH. Mechanisms regulating the degradation of dentin matrices by endogenous dentin proteases and their role in dental adhesion. A review. Am J Dent 2014;27(4):203. PMID: 25831604.
  97. Fang H, Li Q-L, Han M, et al. Anti-proteolytic property and bonding durability of mussel adhesive protein-modified dentin adhesive interface. Dent Mater 2017;33(10):1075–1083. DOI: 10.1016/j.dental.2017.07.008.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.