Biological Impact of Alloplastic Bone Graft vs Bovine Xenograft and Allograft Materials in Bone Healing: An Experimental Study
Mohammed Ali Saleh Flifl, Hamdy Marzook, Mona Denewar
Keywords :
Allograft, Alloplast, Bone defect, Bone healing, Xenograft
Citation Information :
Flifl MA, Marzook H, Denewar M. Biological Impact of Alloplastic Bone Graft vs Bovine Xenograft and Allograft Materials in Bone Healing: An Experimental Study. J Contemp Dent Pract 2022; 23 (5):482-491.
Aim: This study aims to compare the performance of beta-tricalcium phosphate with calcium sulfate (β-TCP/CS) vs a bovine xenograft, freeze-dried mineralized allograft, and spontaneous healing in surgically prepared bone defects in rabbit tibia.
Materials and methods: The grafting materials were implanted in three out of four standardized monocortical bony defects, 3-mm diameter and 3-mm deep, in rabbit tibia while one defect was left empty for spontaneous healing as a control group. Twelve rabbits were euthanized at 2 and 6 weeks after surgery. The bone tissue specimens were histologically evaluated using hematoxylin and eosin, Masson's trichrome and osteoprotegrin (OPG) immunohistochemical staining. Results were quantitatively evaluated.
Results: An enhancement of bone healing was noticed in the defects grafted with β-TCP/CS compared with all other groups at 2 and 6 weeks after surgery as it showed significant increase in OPG expression and a significant decrease in the amount of collagen at 6 weeks after surgery. The residual grafted particles were the least with β-TCP/CS at 6 weeks after surgery.
Conclusion: The β-TCP/CS grafting material is a promising bioactive alloplastic bone substitute as it proved to be biocompatible, osteoconductive, and bioresorbable bone substitute.
Clinical significance: The β-TCP/CS grafting material can be used for guided bone regeneration resulting in pronounced high-quality bone which aids in oral and maxillofacial reconstruction.
Henkel J, Woodruff MA, Epari DR, et al. Bone regeneration based on tissue engineering conceptions: a 21st century perspective. Bone Res 2013;1(3):216–248. DOI: 10.4248/BR201303002.
Le BQ, Nurcombe V, Cool SM, et al. The components of bone and what they can teach us about regeneration. Materials (Basel). 2017;11(1):14. DOI: 10.3390/ma11010014.
Titsinides S, Agrogiannis G, Karatzas T. Bone grafting materials in dentoalveolar reconstruction: a comprehensive review. Jpn Dent Sci Rev 2019;55(1):26–32. DOI: 10.1016/j.jdsr.2018.09.003.
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2017;2(4):224–247. DOI: 10.1016/j.bioactmat.2017.05.007.
Tovar N, Jimbo R, Gangolli R, et al. Evaluation of bone response to various anorganic bovine bone xenografts: an experimental calvaria defect study. Int J Oral Maxillofac Surg 2014;43(2):251–660. DOI: 10.1016/j.ijom.2013.07.005.
Rh Owen G, Dard M, Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J Biomed Mater Res B Appl Biomater. 2018;106(6):2493–2512. DOI: 10.1002/jbm.b.34049.
Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg 2001;71(6):354–361. PMID: 11409021.
Fairbairn P, Leventis M, Mangham C, et al. Alveolar ridge preservation using a novel synthetic grafting material: a case with two-year follow-up. Case Rep Dent 2018;2018:6412806. DOI: 10.1155/2018/6412806.
Silvestrini G, Ballanti P, Patacchioli F, et al. Detection of osteoprotegerin (OPG) and its ligand (RANKL) mRNA and protein in femur and tibia of the rat. J Mol Histol 2005;36(1–2):59–67. DOI: 10.1007/s10735-004-3839-1.
Ying S, Tan M, Feng G, et al. Low-intensity pulsed ultrasound regulates alveolar bone homeostasis in experimental periodontitis by diminishing oxidative stress. Theranostics 2020;10(21):9789–9807. DOI: 10.7150/thno.42508.
Behfarnia P, Shahabooei M, Mashhadiabbas F, et al. Comparison of bone regeneration using three demineralized freeze-dried bone allografts: a histological and histomorphometric study in rabbit calvaria. Dent Res J (Isfahan) 2012;9(5):554–560. DOI: 10.4103/1735-3327.104873.
Macedo AS, Feitosa CC, Kawamoto YKF, et al. Animal modeling in bone research: should we follow the white rabbit? Animal Model Exp Med 2019;2(3):162–168. DOI: 10.1002/ame2.12083.
Stübinger S, Dard M. The rabbit as experimental model for research in implant dentistry and related tissue regeneration. J Invest Surg 2013;26(5):266–282. DOI: 10.3109/08941939.2013.778922.
El-bahrawy A, El-hamadan S, Sharshar A, et al. Comparative evaluation of bone regenerating capacity using nanocrystalline hydroxyapatite and coral composite: a canine model study. J Curr Vet Res 2021;3(2):84–93. DOI: 10.21608/jcvr.2021.199439.
AlNashar A, Ahmad I, Khedder Y, et al. Evaluation the effect of hyaluronic acid on bone healing process: an experimental study in the rabbits. Eur J Pharm Med Res Artic 2017; 4(1): 98–101.
Pabbruwe MB, Standard OC, Sorrell CC, et al. Bone formation within alumina tubes: effect of calcium, manganese, and chromium dopants. Biomaterials 2004;25(20):4901–4910. DOI: 10.1016/j.biomaterials.2004.01.005.
Leventis MD, Fairbairn P, Dontas I, et al. Biological response to β-tricalcium phosphate/calcium sulfate synthetic graft material: an experimental study. Implant Dent 2014;23(1):37–43. DOI: 10.1097/ID.0000000000000030.
Cai Z, Zhang T, Di L, et al. Morphological and histological analysis on the in vivo degradation of poly (propylene fumarate)/(calcium sulfate/β-tricalcium phosphate). Biomed Microdevices 2011;13(4):623–631. DOI: 10.1007/s10544-011-9532-8.
Eleftheriadis E, Leventis MD, Tosios KI, et al. Osteogenic activity of β-tricalcium phosphate in a hydroxyl sulphate matrix and demineralized bone matrix: a histological study in rabbit mandible. J Oral Sci 2010;52(3):377–384. DOI: 10.2334/josnusd.52.377.
Evaniew N, Tan V, Parasu N, et al. Use of a calcium sulfate-calcium phosphate synthetic bone graft composite in the surgical management of primary bone tumors. Orthopedics 2013;36(2):e216–e22.
Mazor Z, Mamidwar S, Ricci JL, et al. Bone repair in periodontal defect using a composite of allograft and calcium sulfate (DentoGen) and a calcium sulfate barrier. J Oral Implantol 2011;37(2):287–292. DOI: 10.1563/AAID-JOI-D-10-00006.1.
Podaropoulos L, Veis AA, Papadimitriou S, et al. Bone regeneration using beta-tricalcium phosphate in a calcium sulfate matrix. J Oral Implantol 2009;35(1):28–36. DOI: 10.1563/1548-1336-35.1.28.
Chan HL, Lin GH, Fu JH, et al. Alterations in bone quality after socket preservation with grafting materials: a systematic review. Int J Oral Maxillofac Implants 2013;28(3):710–720. DOI: 10.11607/jomi.2913.
Titsinides S, Karatzas T, Perrea D, et al. Osseous healing in surgically prepared bone defects using different grafting materials: an experimental study in pigs. Dent J (Basel) 2020;8(1):7. DOI: 10.3390/dj8010007.
Leventis M, Fairbairn P, Mangham C, et al. Bone healing in rabbit calvaria defects using a synthetic bone substitute: a histological and micro-CT comparative study. Materials (Basel) 2018;11(10):2004. DOI: 10.3390/ma11102004.
Kim Y, Nowzari H, Rich SK. Risk of prion disease transmission through bovine-derived bone substitutes: a systematic review. Clin Implant Dent Relat Res 2013;15(5):645–653. DOI: 10.1111/j.1708-8208.2011.00407.x.
Mordenfeld A, Hallman M, Johansson CB, et al. Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone. Clin Oral Implants Res 2010;21(9):961–970. DOI: 10.1111/j.1600-0501.2010.01939.x
Steiner, G. After Mineralization, Mineralized Freeze-Dried Bone Allograft Particles are Exfoliated but not Resorbed. Preprints 2019, 2019040271.
Scarano A, Degidi M, Iezzi G, et al. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dent 2006;15(2):197–207. DOI: 10.1097/01.id.0000220120.54308.f3.
Froum SJ, Wallace SS, Elian N, et al. Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting. Int J Periodontics Restorative Dent 2006;26(6):543–551. PMID: 17243327.
Nappe CE, Rezuc AB, Montecinos A, et al. Histological comparison of an allograft, a xenograft and alloplastic graft as bone substitute materials. J Osseointegration 2016;8(2)20–26. DOI: 10.23805/jo.2016.08.02.02.
Shibuya N, Jupiter DC. Bone graft substitute: allograft and xenograft. Clin Podiatr Med Surg 2015;32(1):21–34. DOI: 10.1016/j.cpm.2014.09.011.
Hassumi JS, Mulinari–Santos G, Fabris ALDS, et al. Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis. J Appl Oral Sci 2018;26:e20170326. DOI: 10.1590/1678-7757-2017-0326.
Luvizuto ER, Queiroz TP, Dias SM, et al. Histomorphometric analysis and immunolocalization of RANKL and OPG during the alveolar healing process in female ovariectomized rats treated with oestrogen or raloxifene. Arch Oral Biol 2010;55(1):52–59. DOI: 10.1016/j.archoralbio.2009.11.001.