The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 23 , ISSUE 6 ( June, 2022 ) > List of Articles

EDITORIAL

Microbial Corrosion in Orthodontics

Umarevathi Gopalakrishnan, Sumathi Felicita, BSM Ronald, Elamurugan Appavoo

Citation Information : Gopalakrishnan U, Felicita S, Ronald B, Appavoo E. Microbial Corrosion in Orthodontics. J Contemp Dent Pract 2022; 23 (6):569-571.

DOI: 10.5005/jp-journals-10024-3290

License: CC BY-NC 4.0

Published Online: 23-09-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

PDF Share
  1. Alansari R, Faydhi D, Ashour B, et al. Adult perceptions of different orthodontic appliances. Patient prefer adherence 2019;13(13): 2119–2128. DOI: 10.2147/PPA.S234449.
  2. Mikulewicz M, Chojnacka K. Trace metal release from orthodontic appliances by in vivo studies: a systematic literature review. Biol Trace Elem Res 2010;137(2):127–138. DOI: 10.1007/s12011-009-8576-6.
  3. Mikulewicz M, Chojnacka K. Release of metal ions from orthodontic appliances by in vitro studies: a systematic literature review. Biol Trace Elem Res 2011;139(3):241–256. DOI: 10.1007/s12011-010-8670-9.
  4. Piñeda-Zayas A, Menendez Lopez-Mateos L, Palma-Fernández JC, et al. Assessment of metal ion accumulation in oral mucosa cells of patients with fixed orthodontic treatment and cellular DNA damage: a systematic review. Crit Rev Toxicol 2021;51(7):622–633. DOI: 10.1080/10408444.2021.1960271.
  5. Imani MM, Mozaffari HR, Ramezani M, et al. Effect of fixed orthodontic treatment on salivary nickel and chromium levels: a systematic review and meta-analysis of observational studies. Dent J 2019;7(1): 21.1–15. DOI: 10.3390/dj7010021.
  6. Willis CL, Gibson GR, Allison C, et al. Growth, incidence and activities of dissimilatory sulfate-reducing bacteria in the human oral cavity. FEMS Microbiol Lett 1995;129(2−3):267–271. DOI: 10.1111/j.1574-6968.1995.tb07591.x.
  7. Langendijk PS, Hagemann J, van der Hoeven JS. Sulfate-reducing bacteria in periodontal pockets and in healthy oral sites. J Clin Periodontol 1999;26(9):596–599. DOI: 10.1034/j.1600-051x.1999.260906.x.
  8. van der Hoeven JS, van den Kieboom CW, Schaeken MJ. Sulfate-reducing bacteria in the periodontal pocket. Oral Microbiol Immunol 1995;10(5):288–290. DOI: 10.1111/j.1399-302x.1995.tb00156.x.
  9. Boopathy R, Robichaux M, LaFont D, et al. Activity of sulfate-reducing bacteria in human periodontal pocket. Can J Microbiol 2002;48(12):1099–1103. DOI: 10.1139/w02-104.
  10. Langendijk PS, Kulik EM, Sandmeier H, et al. Isolation of Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing bacteria involved in human periodontal disease. Int J Syst Evol Microbiol 2001;51(Pt. 3):1035–1044. DOI: 10.1099/00207713-51-3-1035.
  11. Langendijk-Genevaux PS, Grimm WD, van der Hoeven JS. Sulfate-reducing bacteria in relation with other potential periodontal pathogens. J Clin Periodontol 2001;28(12):1151–1157. DOI: 10.1034/j.1600-051x.2001.281210.x.
  12. Watanabe K, Mikamo H, Tanaka K. [Clinical significance of sulfate-reducing bacteria for ulcerative colitis]. Nihon Rinsho 2007;65(7): 1337–1346. http://www.ncbi.nlm.nih.gov/pubmed/17642254.
  13. Larry LB, Allen HW. Sulphate-reducing bacteria environmental and engineered systems. 1st ed. (Larry LB, Allen HW, editors). Cambridge University Press; 2007. Cambridge, United Kingdom.
  14. Beerens H, Romond C. Sulfate-reducing anaerobic bacteria in human feces. Am J Clin Nutr 1977;30(11):1770–1776. DOI: 10.1093/ajcn/30.11.1770.
  15. Heggendorn FL, Gonçalves LS, Dias EP, et al. Biocorrosion of endodontic files through the action of two species of sulfate-reducing bacteria: Desulfovibrio desulfuricans and Desulfovibrio fairfieldensis. J Contemp Dent Pract 2015;16(8):665–673. DOI: 10.5005/jp-journals-10024-1738.
  16. Beech IB, Sunner JA. Sulphate-reducing bacteria and their role in corrosion of ferrous materials. In: Barton LL, Hamilton WA, editors. Sulphate-reducing bacteria: environmental and engineered systems. Cambridge: Cambridge University Press. 2007:459–482.
  17. Gaines RH. Bacterial activity as a corrosive influence in the soil. J Ind Eng Chem 1910;2(4):128–130. DOI: 10.1021/ie50016a003.
  18. Iverson WP. Microbial corrosion of metals. In: Allen IL, editor. Advances in applied microbiology. 1st ed. Academic Press; 1987:1–36. DOI: 10.1016/S0065-2164(08)70077-7.
  19. Dexter SC, Duquette DJ, Siebert OW, et al. Use and limitations of electrochemical techniques for investigating microbiological corrosion. Corrosion 1991;47(4):308–318. DOI: 10.5006/1.3585258.
  20. Videla HA, Edyvean RG, Swords CL, et al. (1999) Comparative study of the corrosion product films formed in biotic and abiotic media. Paper 163, Corrosion 99, NACE International, Houston, Texas.
  21. Beech IB, Zinkevich V, Tapper R, et al. Direct involvement of an extracellular complex produced by a marine sulfate-reducing bacterium in deterioration of steel. Geomicrobiol J 1998;15(2):121–134. DOI: 10.1080/01490459809378069.
  22. Hamilton WA. Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 1985;39(1):195–217. DOI: 10.1146/annurev.mi.39.100185.001211.
  23. Videla HA. An overview of mechanisms by which sulphate-reducing bacteria influence corrosion of steel in marine environments. Biofouling 2000;15(1–3):37–47. DOI: 10.1080/08927010009386296.
  24. Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 2014;80(4): 1226–1236. DOI: 10.1128/AEM.02848-13.
  25. Heggendorn FL, Souza Gonçalves L, Dias EP, et al. Detection of sulphate-reducing bacteria in human saliva. Acta Odontol Scand 2013;71(6):1458–1463. DOI: 10.3109/00016357.2013.770163.
  26. Paster BJ, Boches SK, Galvin JL, et al. Bacterial diversity in human subgingival plaque. J Bacteriol 2001;183(12):3770–3783. DOI: 10.1128/JB.183.12.3770-3783.2001.
  27. Majou D, Christieans S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci 2018;145:273–284. DOI: 10.1016/j.meatsci.2018.06.013.
  28. Mitsui T, Fujihara M, Harasawa R. Salivary nitrate and nitrite may have antimicrobial effects on Desulfovibrio species. Biosci Biotechnol Biochem 2013;77(12):2489–2491. DOI: 10.1271/bbb.130521.
  29. Eisenbrand G, Spiegelhalder B, Preussmann R. Nitrate and nitrite in saliva. Oncology 1980;37(4):227–231. DOI: 10.1159/000225441.
  30. Corfield AP. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 2015;1850(1):236–252. DOI: 10.1016/j.bbagen.2014.05.003.
  31. Jeon DM, An JS, Lim BS, et al. Orthodontic bonding procedures significantly influence biofilm composition. Prog Orthod 2020;21(1):14. DOI: 10.1186/s40510-020-00314-8.
  32. An JS, Kim K, Cho S, et al. Compositional differences in multi-species biofilms formed on various orthodontic adhesives. Eur J Orthod 2017;39(5):528–533. DOI: 10.1093/ejo/cjw089.
  33. Lucchese A, Bondemark L, Marcolina M, et al. Changes in oral microbiota due to orthodontic appliances: a systematic review. J Oral Microbiol 2018;10(1):1476645. DOI: 10.1080/20002297.2018.1476645.
  34. Teughels W, Van Assche N, Sliepen I, et al. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006;17(Suppl. 2):68–81. DOI: 10.1111/j.1600-0501.2006.01353.x.
  35. Ahn SJ, Cho EJ, Oh SS, et al. The effects of orthodontic bonding steps on biofilm formation of Streptococcus mutans in the presence of saliva. Acta Odontol Scand 2012;70(6):504–510. DOI: 10.3109/00016357.2011.640277.
  36. Marsh PD, Bradshaw DJ. Microbial community aspects of dental plaque. In: Newman HN, Wilson M, editors. Dental plaque revisited; Cardiff: BioLine.1999:237–253.
  37. Mystkowska J, Niemirowicz-Laskowska K, Łysik D, et al. The role of oral cavity biofilm on metallic biomaterial surface destruction: corrosion and friction aspects. Int J Mol Sci 2018;19(3):743. DOI: 10.3390/ijms19030743.
  38. Messer RLW, Tackas G, Mickalonis J, et al. Corrosion of machined titanium dental implants under inflammatory conditions. J Biomed Mater Res B Appl Biomater 2009;88(2):474–481. DOI: 10.1002/jbm.b.31162.
  39. Mathew MT, Barão VA, Yuan JCC, et al. What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium? J Mech Behav Biomed Mater 2012;8:71–85. DOI: 10.1016/j.jmbbm.2011.11.004.
  40. Souza JCM, Henriques M, Oliveira R, et al. Do oral biofilms influence the wear and corrosion behavior of titanium? Biofouling 2010;26(4):471–478. DOI: 10.1080/08927011003767985.
  41. Souza JCM, Henriques M, Oliveira R, et al. Biofilms inducing ultra-low friction on titanium. J Dent Res 2010;89(12):1470–1475. DOI: 10.1177/0022034510378428.
  42. Florin THJ, Neale G, Goretski S, et al. The sulfate content of foods and beverages. J Food Compos Anal 1993;6(2):140–151. DOI: 10.1006/jfca.1993.1016.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.