Citation Information :
Srivastava R, Khandelwal S, Makker R, Razdan R, Bhogisetty C, Albar NH, Alamoudi A, Zidane B, Panta P. Impact Strength of Various Types of Acrylic Resin: An In Vitro Study. J Contemp Dent Pract 2023; 24 (1):56-60.
Aim: The aim of this study is to evaluate and compare the impact strength of conventional acrylic resin, high-impact acrylic resin, high-impact acrylic resin reinforced with silver nanoparticles, and high-impact acrylic resin reinforced with a zirconium oxide powder.
Materials and methods: A total of 60 samples were prepared of dimensions 60 mm length × 7 mm width × 4 mm thickness to test impact strength. Machined stainless steel dies of the same dimension were used to form molds for the fabrication of these samples. Of 60 samples, 15 samples were prepared each from conventional acrylic resin (Group A1), high-impact acrylic resin (Group A2), acrylic resin reinforced with silver nanoparticles (Group A3), and acrylic resin reinforced with zirconium oxide powder (Group A4). Izod-Charpy pendulum impact testing machine was used.
Results: The impact strength of group A1 was in the range of 2.83–3.30 kJ/m2 (M = 3.12 kJ/m2, SD = 0.16), group A2 was in range of 5.10– 5.78 kJ/m2 (M = 5.51 kJ/m2, SD = 0.18), group A3 was in range 3.18–3.56 kJ/m2 (M = 3.37 kJ/m2, SD = 0.11), and group A4 was in range 7.18– 7.78 kJ/m2 (M = 7.5 kJ/m2, SD = 0.18). Statistical analysis using one-way ANOVA and t-test revealed significant differences (p < 0.001).
Conclusion: High-impact acrylic resin reinforced with zirconium oxide powder has the highest impact strength.
Clinical significance: This research sheds light on the usefulness of novel filler materials in clinical prosthodontics.
Anusavice KJ, Shen C, Rawls HR. Phillips’ science of dental materials. 12th edition, St. Louis, Mo: Elsevier/Saunders, 2013.
Soygun K, Bolayir G, Boztug A. Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials. J Adv Prosthodont 2013;5:153–160. DOI: 10.4047/jap.2013.5.2.153
Rodrigues AHC. Metal reinforcement for implant-supported mandibular overdenture. J Prosthet Dent 2000;83(5):511–513. DOI: 10.1016/s0022-3913(00)70006-0.
John J, Gangadhar SA, Shah I. Flexural strength of heat – polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers. J Prosthet Dent 2001;86(4):424–427. DOI: 10.1067/mpr.2001.118564.
EL-Sheikh AM, AL-Zahrani SB. Causes of denture fracture: survey. Saudi Dent J 2006;18(3):149–153. ID: emr-81056.
Dogan OM, Bolayir G, Keski NS, et al. The effect of esthetic fibers on impact resistance of a conventional heat-cured denture base resin. Dent Mater J 2007;26(2):232–239. PMID: 17621939.
Memom MS, Yunus N, Razak AAA. Some mechanical properties of a highly cross-linked, microwave-polymerized, injection-molded denture base polymer. Int J Prosthodont 2001;14(3):214–218. PMID: 11484567.
Vojdani M, Bagheri R, Khaledi AAR. Effect of aluminum oxide addition on the flexural strength, surface hardness and roughness of heat polymerized acrylic resin. J Dent Sci 2012;7:238–244. http://dx.doi.org/10.1016/j.jds.2012.05.008.
Ghafari T, Rad FH, Ezzati B. Does addition of silver nanoparticles to denture base resin increase its thermal conductivity. Beheshti Univ Dent J 2014;32(2):76–81. https://doi.org/10.22037/jds.v32i3. 24789.
Paladugu LS, Sivakumar M, Ganta R. Evaluation of flexural strength, impact strength and water sorption of various denture base resins: An in vitro study. J Res Adv Dent 2014;3(2):94–99. DOI:10.5005/jp-journals-10019–1271.
Vallittu PK. Comparison of two different silane compounds used for improving adhesion between fibres and acrylic denture base material. J Oral Rehab 1993;20:533–539. DOI: 10.1111/j.1365-2842.1993.tb01640.x.
Ladizesky NH, Chow TW, et al. Denture base reinforcement using woven polyethylene fiber. Int J Prosthodont 1994;7:307–314. PMID: 7993541.
Vallittu PK. A review of methods used to reinforce polymethyl methacrylate resin. J Prosthodont 1995;4(3):183–187. DOI: 10.1111/j. 1532-849x.1995.tb00338.x.
Jagger DC, Jagger RG, Allen SM, et al. An investigation into the transverse and impact strength of high strength denture base acrylic resins. J Oral Rehabil 2002;29:263–267. DOI: 10.1046/j.1365-2842.2002.00830.x.
Sehajpal SB, Sood VK. Effect of metal fillers on some physical properties of acrylic resin. J Prosthet Dent 1989;61(6):746–751. DOI: 10.1016/s0022-3913(89)80055-1.
Dixon DL, Breeding LC. The transverse strengths of three denture base resins reinforced with polyethylene fibers. J Prosthet Dent 1992;67(3):417–419. DOI: 10.1016/0022-3913(92)90261-8.
Beyli MS, Von Fraunhofer JA. An analysis of causes of fracture of acrylic resin dentures. J Prosthet Dent 1981;46(3):238–241. DOI: 10.1016/0022-3913(81)90206-7.
Nejatian T, Sefat F, Johnson T. Impact of packing and processing technique on mechanical properties of acrylic denture base materials. Materials 2015;8:2093–2109. DOI: 10.3390/ma8052093.
Stafford GD, Smith DC. Flexural fatigue tests of some denture base polymers. Br Dent J 1970;128(9):442–445. DOI: 10.1038/sj.bdj.4802483.
Carroll CE, Von Fraunhofer JA. Wire reinforcement of acrylic resin prostheses. J Prosthet Dent 1984;52(5):639–641. DOI: 10.1016/0022-3913(84)90132-x.
Vallittu PK, Lassila VP. Reinforcement of acrylic resin denture base material with metal or fibre strengtheners. J Oral Rehab 1992;19: 225–230. DOI: 10.1111/j.1365-2842.1992.tb01096.x.
Arnold AD, Vargas MA, Shaull KL, et al. Flexural and fatigue strength of denture base resin. J Prosthet Dent 2008;100(1):47–51. DOI: 10.1016/S0022-3913(08)60136-5.
Monterio DR, Group LF, Takamiya AE, et al. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. J Prosthodont 2012;21:7–15. DOI: 10.1111/j. 1532-849X.2011.00772.x.
Yadav P, Mittal R, Sood VK, et al. Effect of incorporation of silane-treated silver and aluminum microparticles on strength and thermal conductivity of PMMA. J Prosthodont 2012;21:546–551. DOI: 10.1111/j.1532-849X.2012.00873.x.
Hamedi-Rad F, Ghaffari T, Rezaii F, et al. Effect of nanosilver on thermal and mechanical properties of acrylic base complete dentures. J Dent 2014;1(5):495–505. PMCID: PMC4290768.
Asar NV, Albayrak H, Korkmaz T, et al. Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins. J Adv Prosthodont 2013;5:241–247. DOI: 10.4047/jap.2013.5.3.241.
Narendra R, Reddy NS, Reddy SD, et al. A comparative evaluation of impact strength of conventionally heat cured and high impact heat cured polymethyl methacrylate denture base resins: An in vitro study. J Contemp Dent Pract 2013;14(6):1115–1121. DOI: 10.5005/jp-journals-10024-1461.
Hameed HK, Rahman HA. The effect of addition nano particle Zro2 on some properties of autoclave processed heat cure acrylic denture base material. J BaghColl Dent 2015; 27(1):32–39. DOI: 10.12816/0015262.
Ihab NS, Hassanen KA, Ali NA. Assessment of zirconium oxide nano-fillers incorporation and silanation on impact, tensile strength and color alteration of heat polymerized acrylic resin. J BaghColl Dentistry 2012;24(2):36–42. DOI: 10.0001/1354.
Ayad NM, Badawi MF, Fatah AA. Effect of reinforcement of high impact acrylic resin with zirconia on some physical and mechanical properties. Rev Clin Pesq Odontol 2008;4(3):145–151. DOI: 10.7213/AOR.V4I3.23218.
Ravindranath, Sabarigirinathan C, Vinayagavel K, et al. A comparative study to evaluate the mechanical properties of zirconium oxide added polymethyl methacrylate by two different methods at two different concentrations – In vitro study. Ann Int Med Dent Res 2015;1(3):161–165. Corpus ID: 212492631.
Ihab NS, Moudhaffar M. Evaluation the effect of modified nano fillers addition on some properties of heat cured acrylic denture base material. J Bagh Coll Dent 2011;23(3):23–29. Corpus ID: 37039524.