The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 1 ( January, 2024 ) > List of Articles

ORIGINAL RESEARCH

Effect of Thermo-mechanical Cycling on Fracture Resistance of Different CAD/CAM Crowns: An In Vitro Study

Mohamed I Elmokadem, Khaled M Haggag, Hussein Ramadan Mohamed

Keywords : Ceramic-polymer, Computer-aided design/computer-aided manufacture, Composite resin, Fracture resistance, Thermo-mechanical cycling

Citation Information : Elmokadem MI, Haggag KM, Mohamed HR. Effect of Thermo-mechanical Cycling on Fracture Resistance of Different CAD/CAM Crowns: An In Vitro Study. J Contemp Dent Pract 2024; 25 (1):29-34.

DOI: 10.5005/jp-journals-10024-3619

License: CC BY-NC 4.0

Published Online: 17-02-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: To evaluate the effect of thermo-mechanical cycling (TMC) on fracture resistance of different computer-aided design/computer-aided manufacture (CAD/CAM) crowns. Materials and methods: A total of 42 CAD/CAM crowns were fabricated on epoxy resin maxillary first premolar teeth and divided into three groups (n = 14) according to the material used: IPS e.max CAD (Ivoclar Vivadent) lithium disilicate (LD), Vita ENAMIC (VE) (VITA Zahnfabrik), Tetric CAD (Ivoclar Vivadent). Also, each group was subdivided into two equal subgroups according to TMC (n = 7). Subgroups (O) without TMC and subgroup (W) with TMC (5–55°C, 30 second, 75,000 cycles). All samples in each group were cemented with a universal bond (Tetric N bond universal) and adhesive resin cement (Variolink Esthetic DC) (Ivoclar Vivadent). Subsequently, the samples were loaded to failure in a universal testing machine at a crosshead speed of 1 mm/min, and the fracture pattern and the fracture resistance in each group were recorded. Results: Fracture resistance was analyzed by one-way analysis of variance (ANOVA) test, followed by Tukey's post hoc test for pairwise comparison. Fracture resistance showed a significant difference between the tested groups before and after TMC; IPS e.max CAD has the highest value (1233.35 ± 97.72, 1165.73 ± 199.54 N) followed by Tetric CAD (927.62 ± 42.5, 992.04 ± 53.46 N) and Vita ENAMIC has lowest value (506.49 ± 74.24, 354.69 ± 90.36 N). Conclusion: Thermo-mechanical cycling affected the fracture resistance of both polymer-based CAD/CAM crowns. Clinical significance: For dental practitioners, both IPS e.max CAD and Tetric CAD can be used clinically for posterior teeth, providing satisfactory results and resistance to fracture.


HTML PDF Share
  1. Fasbinder DJ. Computerized technology for restorative dentistry. Am J Dent 2013;26(3):115–120. PMID: 23986956.
  2. Dahl BE, Dahl JE, Rønold HJ. Digital evaluation of marginal and internal fit of single-crown fixed dental prostheses. Eur J Oral Sci 2018;126(6):512–517. DOI: 10.1111/eos.12576.
  3. Yin R, Kim YK, Jang YS, et al. Comparative evaluation of the mechanical properties of CAD/CAM dental blocks. Odontology 2019;107(3): 360–367. DOI: 10.1007/s10266-018-0407-9.
  4. Okada R, Asakura M, Ando A, et al. Fracture strength testing of crowns made of CAD/CAM composite resins. J Prosthodont Res 2018;62(3):287–292. DOI: 10.1016/j.jpor.2017.10.003.
  5. Alamoush RA, Kushnerev E, Yates JM, et al. Response of two gingival cell lines to CAD/CAM composite blocks. Dent Mater 2020;36(9): 1214–1225. DOI: 10.1016/j.dental.2020.05.014.
  6. Spitznagel FA, Horvath SD, Guess PC, et al. Resin bond to indirect composite and new ceramic/polymer materials: A review of the literature. J Esthet Restor Dent 2014;26(6):382–393. DOI: 10.1111/jerd.12100.
  7. Egilmez F, Ergun G, Cekic-Nagas I, et al. Does artificial aging affect mechanical properties of CAD/CAM composite materials. J Prosthodont Res 2018;62(1):65–74. DOI: 10.1016/j.jpor.2017.06.001.
  8. Shembish FA, Tong H, Kaizer M, et al. Fatigue resistance of CAD/CAM resin composite molar crowns. Dent Mater 2016;32(4):499–509. DOI: 10.1016/j.dental.2015.12.005.
  9. Tsitrou EA, Northeast SE, van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent 2007;35(12):897–902. DOI: 10.1016/j.jdent.2007.07.002.
  10. Alamoush RA, Silikas N, Salim NA, et al. Effect of the composition of CAD/CAM composite blocks on mechanical properties. Biomed Res Int 2018;2018(3):1–8. DOI: 10.1155/2018/4893143.
  11. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res 2014;93(12):1232–1234. DOI: 10.1177/0022034514553976.
  12. Lambert H, Durand JC, Jacquot B, et al. Dental biomaterials for chairside CAD/CAM: State of the art. J Adv Prosthodont 2017;9(6): 486–495. DOI: 10.4047/jap.2017.9.6.486.
  13. Alt V, Hannig M, Wöstmann B, et al. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater 2011;27(4):339–347. DOI: 10.1016/j.dental.2010.11.012.
  14. Stawarczyk B, Liebermann A, Eichberger M, et al. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J Mech Behav Biomed Mater 2015;55:1–11. DOI: 10.1016/j.jmbbm.2015.10.004.
  15. Sonmez N, Gultekin P, Turp V, et al. Evaluation of five CAD/CAM materials by microstructural characterization and mechanical tests: A comparative in vitro study. BMC Oral Health 2018;18(1):5. DOI: 10.1186/s12903-017-0458-2.
  16. Ankyu S, Nakamura K, Harada A. Fatigue analysis of computer-aided design/computer-aided manufacturing resin-based composite vs. lithium disilicate glass-ceramic. Eur J Oral Sci 2016;124(4):387–395. DOI: 10.1111/eos.12278.
  17. https://www.ivoclar.com/en_li/products/digital-processes/tetric-cad.
  18. Naves LZ, Silva GR, Correr-Sobrinho L. Influence of crosshead speed on failure load and failure mode of restored maxillary premolars. Braz Oral Res 2016;30:S1806–83242016000100206. DOI: 10.1590/1807-3107BOR-2016.vol30.0003.
  19. Yucel MT, Yondem I, Aykent F, et al. Influence of the supporting die structures on the fracture strength of all-ceramic materials. Clin Oral Investig 2012;16(4):1105–1110. DOI: 10.1007/s00784-011-0606-z.
  20. Prisco R, Cozzolino G, Vigolo P. Dimensional accuracy of an epoxy die material using different polymerization methods. J Prosthodont 2009;18(2):156–161. DOI: 10.1111/j.1532-849X.2008.00399.x.
  21. Nawafleh N, Bibars AR, Al Twal E, et al. Influence of antagonist material on fatigue and fracture resistance of Zirconia crowns. Eur J Dent 2020;14(2):200–205. DOI: 10.1055/s-0040-1708228.
  22. Vasiliu RD, Porojan SD, Bîrdeanu MI, et al. Effect of thermocycling, surface treatments and microstructure on the optical properties and roughness of CAD-CAM and heat-pressed glass ceramics. Materials (Basel) 2020;13(2):381. DOI: 10.3390/ma13020381.
  23. Aboushelib MN, Elsafi MH. Survival of resin infiltrated ceramics under influence of fatigue. Dent Mater 2016;32(4):529–534. DOI: 10.1016/j.dental.2015.12.001.
  24. Bayne SC. Correlation of clinical performance with ‘in vitro tests’ of restorative dental materials that use polymer-based matrices. Dent Mater 2012;28(1):52–71. DOI: 10.1016/j.dental.2011.08.594.
  25. Carvalho AO, Bruzi G, Giannini M, et al. Fatigue resistance of CAD/CAM complete crowns with a simplified cementation process. J Prosthet Dent 2014;111(4):310–317. DOI: 10.1016/j.prosdent.2013. 09.020.
  26. Nawafleh N, Hatamleh M, Elshiyab S, et al. Lithium disilicate restorations fatigue testing parameters: A systematic review. J Prosthodont 2016;25(2):116–126. DOI: 10.1111/jopr.12376.
  27. Lin GSS, Abdul Ghani NRN, Ismail NH, et al. Polymerization shrinkage and degree of conversion of new zirconia-reinforced rice husk nanohybrid composite. Eur J Dent 2020;14(3):448–455. DOI: 10.1055/s-0040-1713951.
  28. Benavides-Reyes C, Pérez MM, Tejada-Casado M, et al. Color stability and degree of conversion of gingiva-colored resin-based composites. J Esthet Restor Dent 2023;35(6):896–903. DOI: 10.1111/jerd.13082.
  29. Elraggal A, R Afifi R, Alamoush RA, et al. Effect of acidic media on flexural strength and fatigue of CAD-CAM dental materials. Dent Mater 2023;39(1):57–69. DOI: 10.1016/j.dental.2022.11.019.
  30. Beyabanaki E, Ashtiani RE, Moradi M, et al. Biaxial flexural strength and Weibull characteristics of a resin ceramic material after thermal-cycling. J Prosthodont 2023;32(8):721–727. DOI: 10.1111/jopr.13622.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.