Aim: This study aims to evaluate the impact of asiaticoside (AC) on the viability and proliferation of dental pulp stem cells (DPSCs), considering the known negative effects of routinely used intracanal medicaments. This evaluation will be compared with the outcomes from using traditional intracanal medicaments, specifically triple antibiotic paste (TAP) and calcium hydroxide [Ca(OH)2].
Materials and methods: The DPSCs were obtained from the third molars of an adult donor. The application of flow cytometry was employed to do a phenotypic analysis on DPSCs using CD90, CD73, CD105, CD34, CD14, and CD45 antibodies. The methylthiazol tetrazolium (MTT) assay was employed to assess cellular viability. The cells were treated with different concentrations of TAP and Ca(OH)2 (5, 2.5, 1, 0.5, and 0.25 mg/mL), along with AC (100, 50, 25, 12.5, and 6.25 µM). A cell proliferation rate was performed at 3, 5, and 7 days.
Results: The characterization of DPSCs was conducted by flow cytometry analysis, which verified the presence of mesenchymal cell surface antigen molecules (CD105, CD73, and CD90) and demonstrated the absence of hematopoietic markers (CD34, CD45, and CD14). Cells treated with concentrations over 0.5 mg/mL of TAP and Ca(OH)2 showed a notable reduction in cell viability in comparison to the untreated cells (p < 0.05). Additionally, the cells treated with different concentrations of AC 12.5, 6.25, 25, and 50 µM did not differ significantly from the untreated cells (p > 0.05). Nevertheless, cells treated with concentrations of 100 µM showed a significant reduction in viability compared to the untreated cells (p < 0.05). After a period of 7 days, it was noted that cells exposed to three different concentrations of AC (50, 25, and 12.5 µM) had a notable rise in cell density in comparison to TAP and Ca(OH)2(p < 0.05). Furthermore, cells that were exposed to a concentration of 12.5 µM exhibited the highest cell density.
Conclusion: The cellular viability of the AC-treated cells was superior to that of the TAP and Ca(OH)2-treated cells. Moreover, the AC with a concentration of 12.5 µM had the highest degree of proliferation.
Clinical significance: This study underscores the importance of evaluating alternative root canal medicaments and their effects on DPSCs’ growth and vitality. The findings on AC, particularly its influence on the survival and proliferation of DPSCs, offer valuable insights for its probable use as an intracanal medication. This research contributes to the ongoing efforts to identify safer and more effective intracanal treatments, which are crucial for enhancing patient outcomes in endodontic procedures.
Murray PE, Garcia–Godoy F, Hargreaves KM. Regenerative endodontics: A review of current status and a call for action. J Endod 2007;33(4):377–390. DOI: 10.1016/j.joen.2006.09.013.
Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dental Traumatology 2002;18(3):134–137. DOI: 10.1034/j.1600-9657.2002.00097.x.
Witherspoon DE, Small JC, Regan JD, et al. Retrospective analysis of open apex teeth obturated with mineral trioxide aggregate. J Endod 2008;34(10):1171–1176. DOI: 10.1016/j.joen.2008.07.005.
Jeeruphan T, Jantarat J, Yanpiset K, et al. Mahidol study 1: Comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: A retrospective study. J Endod 2012;38(10):1330–1336. DOI: 10.1016/j.joen.2012.06.028.
Huang GJ. Apexification: The beginning of its end. Int Endod J 2009;42(10):855–866. DOI: 10.1111/j.1365-2591.2009.01577.x.
Hargreaves KM, Cohen S. Cohen's Pathways of the Pulp, 10th edition. Elsevier; 2010.
Thibodeau B, Trope M. Pulp revascularization of a necrotic infected immature permanent tooth: Case report and review of the literature. Pediat Dent 2007;29(1):47–50. PMID: 18041512.
Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: New treatment protocol? J Endod 2004;30(4):196–200. DOI: 10.1097/00004770-200404000-00003.
Hasselgren G, Olsson B, Cvek M. Effects of calcium hydroxide and sodium hypochlorite on the dissolution of necrotic porcine muscle tissue. J Endod 1988;14(3):125–127. DOI: 10.1016/S0099-2399(88)80212-7.
Siqueira Jr JF, Lopes HP. Mechanisms of antimicrobial activity of calcium hydroxide: A critical review. Int Endod J 1999;32(5):361–369. DOI: 10.1046/j.1365-2591.1999.00275.x.
Oncag O, Cogulu D, Uzel A, et al. Efficacy of propolis as an intracanal medicament against Enterococcus faecalis. Gen Dent 2006;54(5): 319–322. PMID: 17004565.
Hoshino E, Kurihara–Ando N, Sato I, et al. In-vitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J 1996;29(2):125–130. DOI: 10.1111/j.1365-2591.1996.tb01173.x.
Bose R, Nummikoski P, Hargreaves K. A retrospective evaluation of radiographic outcomes in immature teeth with necrotic root canal systems treated with regenerative endodontic procedures. J Endod 2009;35(10):1343–1349. DOI: 10.1016/j.joen.2009.06.021.
Kim J-H, Kim Y, Shin S-J, et al. Tooth discoloration of immature permanent incisor associated with triple antibiotic therapy: A case report. J Endod 2010;36(6):1086–1091. DOI: 10.1016/j.joen.2010. 03.031.
Ruparel NB, Teixeira FB, Ferraz CC, et al. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J End 2012;38(10):1372–1375. DOI: 10.1016/j.joen.2012.06.018.
Diogenes AR, Ruparel NB, Teixeira FB, et al. Translational science in disinfection for regenerative endodontics. J Endod 2014;40(Suppl. 4):S52–S57. DOI: 10.1016/j.joen.2014.01.015.
Abdeltawab SS, Haimed TSA, Bahammam HA, et al. Biocompatibility and antibacterial action of Salvadora persica extract as intracanal medication (in vitro and ex vivo experiment). Materials 2022;15(4):1373. DOI: 10.3390/ma15041373.
Udalamaththa VL, Jayasinghe CD, Udagama PV. Potential role of herbal remedies in stem cell therapy: Proliferation and differentiation of human mesenchymal stromal cells. Stem Cell Research & Therapy 2016;7(1):1–8. DOI: 10.1186/s13287-016-0366-4.
Gomaa MA, Elhawary YM, Badr AE. Glycyrrhizin enhances the proliferation of diabetic bone marrow-derived mesenchymal stem cells: A potential therapeutic agent in endodontic surgery. J Contemp Dent Pract 2023;24(7):494–499. DOI: 10.5005/jp-journals-10024-3536.
Raja AF, Ali F, Khan IA, et al. Acetyl-11-keto-β-boswellic acid (AKBA); targeting oral cavity pathogens. BMC Res Notes 2011;4(1):1–8. DOI: 10.1186/1756-0500-4-406.
Othman NM, Elhawary YM, Elbeltagy MG, et al. The effect of Rosmarinus officinalis as a potential root canal medication on the viability of dental pulp stem cells. J Contemp Dent Pract 2023;24(9):623–631. DOI: 10.5005/jp-journals-10024-3570.
Gohil KJ, Patel JA, Gajjar AK. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J Pharm Sci 2010;72(5): 546–556. DOI: 10.4103/0250-474X.78519.
James JT, Dubery IA. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules (Basel) 2009;14(10): 3922–3941. DOI: 10.3390/molecules14103922.
Bylka W, Znajdek–Awiżeń P, Studzińska–Sroka E, et al. Centella asiatica in dermatology: An overview. Phytother Res 2014;28(8):1117–1124. DOI: 10.1002/ptr.5110.
Tang B, Zhu B, Liang Y, et al. Asiaticoside suppresses collagen expression and TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts. Arch Dermatol Res 2011;303(8):563–572. DOI: 10.1007/s00403-010-1114-8.
Lee J-H, Kim H-L, Lee MH, et al. Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model. Phytomedicine 2012;19(13):1223–1227. DOI: 10.1016/j.phymed.2012.08.002.
Sycz Z, Tichaczek-Goska D, Wojnicz D. Anti-planktonic and anti-biofilm properties of pentacyclic triterpenes—asiatic acid and ursolic acid as promising antibacterial future pharmaceuticals. Biomolecules 2022;12(1):98. DOI: https://doi.org/10.3390/biom12010098.
Nowwarote N, Osathanon T, Jitjaturunt P, et al. Asiaticoside induces type I collagen synthesis and osteogenic differentiation in human periodontal ligament cells. Phytother Res 2013;27(3):457–462. DOI: 10.1002/ptr.4742.
Suchánek J, Soukup T, Ivancakova R, et al. Human dental pulp stem cells-isolation and long term cultivation. Acta Mecica (Hradec Kravlove) 2007;50(3):195–201. PMID: 18254273.
Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000;97(25):13625–13630. DOI: 10.1073/pnas.240309797.
Bakopoulou A, Georgopoulou α, Grivas I, et al. Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration. Dent Mater 2019;35(2):310–327. DOI: 10.1016/j.dental.2018.11.025.
Wang J, Liu X, Jin X, et al. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(L-lactic acid) scaffolds in vitro and in vivo. Acta Biomater 2010;6(10):3856–3863. DOI: 10.1016/j.actbio.2010.04.009.
De Paz LEC. Redefining the persistent infection in root canals: Possible role of biofilm communities. J Endod 2007;33(6):652–662. DOI: 10.1016/j.joen.2006.11.004.
Sabrah AH, Yassen GH, Liu WC, et al. The effect of diluted triple and double antibiotic pastes on dental pulp stem cells and established Enterococcus faecalis biofilm. Clin Oral Investig 2015;19(8):2059–2066. DOI: 10.1007/s00784-015-1423-6.
Sato T, Hoshino E, Uematsu H, et al. In vitro antimicrobial susceptibility to combinations of drugs of bacteria from carious and endodontic lesions of human deciduous teeth. Oral Microbiol Immunol 1993;8(3):172–176. DOI: 10.1111/j.1399-302x.1993.tb00661.x.
Windley W III, Teixeira F, Levin L, et al. Disinfection of immature teeth with a triple antibiotic paste. J Endod 2005;31(6):439–443. DOI: 10.1097/01.don.0000148143.80283.ea.
Althumairy RI, Teixeira FB, Diogenes A. Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla. J Endod 2014;40(4):521–525. DOI: 10.1016/j.joen.2013.11.008.
Byström A, Claesson R, Sundqvist G. The antibacterial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Dent Traumatol 1985;1(5):170–175. DOI: 10.1111/j.1600-9657.1985.tb00652.x.
Kenee DM, Allemang JD, Johnson JD, et al. A quantitative assessment of efficacy of various calcium hydroxide removal techniques. J Endod 2006;32(6):563–565. DOI: 10.1016/j.joen.2005.10.065.
Van der Sluis L, Versluis M, Wu M, et al. Passive ultrasonic irrigation of the root canal: A review of the literature. Int Endod J 2007;40(6): 415–426. DOI: 10.1111/j.1365-2591.2007.01243.x.
DiFiore PM, Peters DD, Setterstrom JA, et al. The antibacterial effects of calcium hydroxide apexification pastes on Streptococcus sanguis. Oral Surg Oral Med Oral Pathol 1983;55(1):91–94. DOI: 10.1016/0030-4220(83)90313-4.
Luo Y, Fu C, Wang Z, et al. Asiaticoside attenuates the effects of spinal cord injury through antioxidant and anti-inflammatory effects, and inhibition of the p38-MAPK mechanism. Mol Med Rep 2015;12(6):8294–8300. DOI: 10.3892/mmr.2015.4425.
Dong Q, Wang Y, Mohabatpour F, et al. Dental pulp stem cells: Isolation, characterization, expansion, and odontoblast differentiation for tissue engineering. Methods Mol Biol 2019;1922: 91–101. DOI: 10.1007/978-1-4939-9012-2_9.
Chuensombat S, Khemaleelakul S, Chattipakorn S, et al. Cytotoxic effects and antibacterial efficacy of a 3-antibiotic combination: An in vitro study. J Endod 2013;39(6):813–819. DOI: 10.1016/j.joen.2012.11.041.
Wheater MA, Falvo J, Ruiz F, et al. Chlorhexidine, ethanol, lipopolysaccharide and nicotine do not enhance the cytotoxicity of a calcium hydroxide pulp capping material. Int Endod J 2012;45(11):989–995. DOI: 10.1111/j.1365-2591.2012.02057.x.
Fitri AR, Pavasant P, Chamni S, et al. Asiaticoside induces osteogenic differentiation of human periodontal ligament cells through the Wnt pathway. J Periodontol 2018;89(5):596–605. DOI: 10.1002/JPER.17-0471.
Margabandhu G, Vanisree AJ. Dopamine, a key factor of mitochondrial damage and neuronal toxicity on rotenone exposure and also parkinsonic motor dysfunction: Impact of asiaticoside with a probable vesicular involvement. J Chem Neuroanat 2020;106:101788. DOI: 10.1016/j.jchemneu.2020.101788.
Dang J-W, Lei X-P, Li Q-P, et al. Asiaticoside attenuates hyperoxia-induced lung injury in vitro and in vivo. Iran J Basic Med Sci 2019;22(7):797–805. DOI: 10.22038/ijbms.2019.35913.8556.
Augustin JM, Kuzina V, Andersen SB, et al. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 2011;72(6):435–457. DOI: 10.1016/j.phytochem.2011.01.015.
Kumari S, Deori M, Elancheran R, et al. In vitro and in vivo antioxidant, anti-hyperlipidemic properties and chemical characterization of Centella asiatica (L.) extract. Frontiers Pharmacol 2016;7:400. DOI: 10.3389/fphar.2016.00400.
Masola B, Oguntibeju OO, Oyenihi AB. Centella asiatica ameliorates diabetes-induced stress in rat tissues via influences on antioxidants and inflammatory cytokines. Biomed Pharmacother 2018;101: 447–457. DOI: 10.1016/j.biopha.2018.02.115.
Cheng CL, Guo JS, Luk J, et al. The healing effects of Centella extract and asiaticoside on acetic acid induced gastric ulcers in rats. Life Sci 2004;74(18):2237–2249. DOI: 10.1016/j.lfs.2003.09.055.