The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 6 ( June, 2024 ) > List of Articles

ORIGINAL RESEARCH

Evaluation of the Regenerative Capacity of Demineralized Bone Matrix vs Fat Graft in Alveolar Cleft Model in Albino Rats

Esraa Abdel Raouf, Amira M Elsherbini, Eman Abdel Salam Yousef, Mohamed Abdulrahman, Ahmed Ragheb Zaher

Keywords : Alveolar cleft, Demineralized bone matrix, Fat graft, Osteocalcin

Citation Information : Raouf EA, Elsherbini AM, Yousef EA, Abdulrahman M, Zaher AR. Evaluation of the Regenerative Capacity of Demineralized Bone Matrix vs Fat Graft in Alveolar Cleft Model in Albino Rats. J Contemp Dent Pract 2024; 25 (6):554-562.

DOI: 10.5005/jp-journals-10024-3706

License: CC BY-NC 4.0

Published Online: 23-09-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: This study was performed to evaluate the regenerative capacity of demineralized bone matrix vs fat graft, both guided by pericardium membrane in alveolar cleft model in albino rats. Materials and methods: A total of 72 rats were required in this study. A surgical bone defect with a 7 mm length × 4 mm width × 3 mm depth was created as a model of an alveolar cleft, then the rats were divided randomly into four equal groups each group contained 18 rats: control group (defect only), the membrane group (the defect was covered by the pericardium membrane), the demineralized bone matrix (DBM) group (the defect was filled with DBM guided by pericardium membrane) and fat group (the defect was filled with a fat graft guided by the pericardium membrane). Around 6 rats from each group were euthanized after 2, 4, and 8 weeks. Skulls were scanned with cone beam computed tomography (CBCT) and harvested for histological evaluation with routine H&E immunohistochemical stains (Anti-osteocalcin and Anti-Wnt5a). The data was recorded and statistically analyzed by a two-way ANOVA. Results: The study showed a notable formation of new bone, and expression of OCN and Wnt5a were notably increased by time in the fat group. However, the density of bone grafts and OCN and Wnt5a expression decreased with time in the DBM group. Control and membrane groups showed negative OCN and Wnt5a immune-reactivity in the cleft site. Conclusion: Fat graft results were superior to DBM results with regard to mucosal closure and accelerated bone regeneration, and may represent an effective treatment for alveolar cleft reconstruction. Clinical significance: Finding an inexpensive, accessible, biocompatible and easily manipulated treatment for craniofacial reconstruction and fat graft fulfilled the desired aims. Further investigations with prolonged evaluation periods are needed.


PDF Share
  1. Wójcicka K, Wójcicki PJPJoS. Epidemiology of lip, alveolar process and palate clefts-comparison of own studies with data from other centres. Polish Journal of Surgery 2009;81(1):58–67. DOI: 10.2478/v10035-009-0008-y.
  2. Seifeldin SA. Is alveolar cleft reconstruction still controversial? (Review of literature). The Saudi dental journal. Saudi Dent J 2016;28(1):3–11. DOI: 10.1016/j.sdentj.2015.01.006.
  3. Khojasteh A, Kheiri L, Motamedian SR, et al. Regenerative medicine in the treatment of alveolar cleft defect: A systematic review of the literature. J Craniomaxillofac Surg 2015;43(8):1608–1613. DOI: 10.1016/j.jcms.2015.06.041a.
  4. Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biology 2015;60(10):1517–1532. DOI: 10.1016/j.archoralbio.2015.07.003.
  5. Moussa NT, Dym H. Maxillofacial bone grafting materials. Dent Clin North Am 2020;64(2):473–490. DOI: 10.1016/j.cden.2019.12.011.
  6. Sanaei R, Abu J, Nazari M, et al. Evaluation of osteogenic potentials of avian demineralized bone matrix in the healing of osseous defects in pigeons. Vet Surg 2015;44(5):603–612. DOI: 10.1111/vsu.12292.
  7. Grimaldi M, Gentile P, Labardi L, et al. Lipostructure technique in Romberg syndrome. J Craniofac Surg 2008;19(4):1089–1091. DOI: 10.1097/SCS.0b013e318176354a.
  8. Bertozzi N, Simonacci F, Grieco MP, et al. The biological and clinical basis for the use of adipose-derived stem cells in the field of wound healing. Ann Med Surg (Lond) 2017;20:41–48. DOI: 10.1016/j.amsu.2017.06.058.
  9. Rai S. Autogenous fat as an ideal interpositional material in temporomandibular joint surgery. J Maxillofac Oral Surg 2021;20(4):527–533. DOI: 10.1007/s12663-021-01648-4.
  10. Eledeissi A, Ahmed M, Helmy E. Frontal sinus obliteration utilizing autogenous abdominal fat graft. Open Access Maced J Med Sci 2018;6(8):1462–1467. DOI: 10.3889/oamjms.2018.295.
  11. Jones CM, Mackay DR. Autologous fat grafting in cleft lip and palate. J Craniofac Surg 2019;30(3):686–691. DOI: 10.1097/SCS.0000000000005205.
  12. Yamanaka JS, Oliveira AC, Bastos AR, et al. Collagen membrane from bovine pericardium for treatment of long bone defect. J Biomed Mater Res B Appl Biomater 2023;111(2):261–270. DOI: 10.1002/jbm.b.35148.
  13. Le B, Nielsen B. Guided tissue regeneration in implant dentistry. Elsevier; 2018. pp. 475–508.
  14. Mostafa NZ, Doschak MR, Major PW, et al. Reliable critical sized defect rodent model for cleft palate research. J Craniomaxillofac Surg 2014;42(8):1840–1846. DOI: 10.1016/j.jcms.2014.07.001.
  15. Bozkurt M, Kapı E, Şirinoğlu H, et al. The effects of the centrifugation speed on the survival of autogenous fat grafts in a rat model. J Plast Surg Hand Surg 2016;50(3):161–166. DOI: 10.3109/2000656X.2015.113 7926.
  16. Sahai S, Wilkerson M, Xue H, et al. Wharton's jelly for augmented cleft palate repair in a rat critical-size alveolar bone defect model. Tissue Eng Part A 2020;26(11–12):591–601. DOI: 10.1089/ten.TEA.2019.0254.
  17. Alpan AL, Ozer H. Ozone therapy enhances osseous healing in rats with diabetes with calvarial defects: A morphometric and immune-histochemical study. J Periodontol 2016;87(8):982–989. DOI: 10.1902/jop.2016.160009.
  18. Kim HJ, Jung BH, Yoo KY, et al. Determination of the critical diabetes duration in a streptozotocin-induced diabetic rat calvarial defect model for experimentation regarding bone regeneration. J Periodontal Implant Sci 2017;47(5):339–350. DOI: 10.5051/jpis.2017.47.5.339.
  19. Kadashetti V, Shivakumar K, Baad R, et al. A quantitative study of comparing the routine decalcification and microwave decalcification methods by using different decalcifying agents. Indian Journal of Multidisciplinary Dentistry 2017;7(2):94. DOI: 10.4103/ijmd.ijmd_37_17.
  20. Antonarakis GS, Carmichael RPJC, Orthodontics C. Management of missing teeth, dental implants, and prosthetic restoration in orofacial clefts. Cleft and Craniofacial Orthodontics 2023:517–541. DOI: 10.1002/9781119778387.ch40.
  21. Nguyen PD, Lin CD, Allori AC, et al. Establishment of a critical-sized alveolar defect in the rat: A model for human gingivoperiosteoplasty. Plast Reconstr Surg 2009;123(3):817–825. DOI: 10.1097/PRS.0b013e31819ba2f4.
  22. Bakshi R, Hokugo A, Zhou S, et al. Application of hydroxycholesterols for alveolar cleft osteoplasty in a rodent model. Plast Reconstr Surg 2019;143(5):1385–1395. DOI: 10.1097/PRS.00000000000 05528.
  23. Stasiak M, Racka-Pilszak B. A novel method for alveolar bone grafting assessment in cleft lip and palate patients: Cone-beam computed tomography evaluation. Clin Oral Investig 2021;25(4):1967–1975. DOI: 10.1007/s00784-020-03505-z.
  24. Kindelan JD, Nashed RR, Bromige MR. Radiographic assessment of secondary autogenous alveolar bone grafting in cleft lip and palate patients. Cleft Palate Craniofac J 1997;34(3):195–198. DOI: 10.1597/1545-1569_1997_034_0195_raosaa_2.3.co_2.
  25. Kim J, Jeong W. Secondary bone grafting for alveolar clefts: Surgical timing, graft materials, and evaluation methods. Arch Craniofac Surg 2022;23(2):53–58. DOI: 10.7181/acfs.2022.00115.
  26. Chougule V, Mulay A, Ahuja BJB. Clinical case study: Spine modeling for minimum invasive spine surgeries (MISS) using rapid prototyping. 2018;226:3071. ISBN: 978-93-80689-28-9.
  27. Kandalam U, Kawai T, Ravindran G, et al. Pre-differentiated gingival stem cell-induced bone regeneration in rat alveolar bone defect model. Tissue Eng Part A 2021;27(5–6):424–436. DOI: 10.1089/ten.tea.2020.0052.
  28. Neagu TP, Ţigliş M, Cocoloş I, et al. The relationship between periosteum and fracture healing. Rom J Morphol Embryol 2016;57(4):1215–1220. PMID: 28174786.
  29. Liang F, Leland H, Jedrzejewski B, et al. Alternatives to: The state of alveolar tissue engineering. J Craniofac Surg 2018;29(3):584–593. DOI: 10.1097/SCS.0000000000004300.
  30. Monazzah S, Oryan A, Bigham-Sadegh A, et al. Application of bovine bone versus bovine DBM graft on bone healing of radial defect in rat. Comparative Clinical Pathology 2017;26(6):1293–1298. DOI: 10.1007/s00580-017-2526-z.
  31. Kim S-G, Oh J-S. Demineralized Bone Matrix (DBM) and Bone Grafts. Translating Biomaterials for Bone Graft: CRC Press; 2017. pp. 89–104. Boca Raton; Florida. DOI: 10.1201/9781315363530.
  32. Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res 2019;23:9. DOI: 10.1186/s40824-019-0157-y.
  33. Kumar V, Rattan V, Rai S, et al. Comparative assessment of autogenous cancellous bone graft and bovine-derived demineralized bone matrix for secondary alveolar bone grafting in patients with unilateral cleft lip and palate. Cleft Palate Craniofac J 2022;59(7):833–840. DOI: 10.1177/10556656211025197.
  34. Eleswarapu A, Rowan FA, Le H, et al. Efficacy, cost, and complications of demineralized bone matrix in instrumented lumbar fusion: Comparison with RHBMP-2. Global Spine J 2021;11(8):1223–1229. DOI: 10.1177/2192568220942501.
  35. Qin W, Xu Y, Liu X, et al. [Experimental and primary clinical research of core fat graft]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2012;26(5):576–582. PMID: 22702053.
  36. Ladani SP, Sailer H. Application of buccal fat pad for lining of lateral defect in cleft palate repair and review of literature. J Cleft Lip Palate Craniofac Anomal 2016;3(2):63–66. DOI: 10.4103/2348-2125. 187507.
  37. Kablan F. The use of buccal fat pad free graft in closure of soft-tissue defects and dehiscence in the hard palate. Ann Maxillofac Surg 2016;6(2):241–245. DOI: 10.4103/2231-0746.200326.
  38. Yaguchi K, Fujita K, Noguchi M, et al. The palatal fistula closure using buccal fat graft after palatoplasty for cleft palate: Two case reports. Cleft Palate Craniofac J 2022;59(2):268–272. DOI: 10.1177/10556656211007000.
  39. Ramesh S. Structural Fat Grafting: More Than a Permanent Filler. Foundational Papers in Oculoplastics: Springer; 2022. pp. 53–58. Berlin; Germany. DOI: 10.1007/978-3-540-85542-2.
  40. Bragdon B, Lam S, Aly S, et al. Earliest phases of chondrogenesis are dependent upon angiogenesis during ectopic bone formation in mice. Bone 2017;101:49–61. DOI: 10.1016/j.bone.2017.04.002.
  41. Portela GS, Cerci DX, Pedrotti G, et al. L-PRP diminishes bone matrix formation around autogenous bone grafts associated with changes in osteocalcin and PPAR-γ immunoexpression. Int J Oral Maxillofac Surg 2014;43(2):261–268. DOI: 10.1016/j.ijom.2013.07.739.
  42. Li D, Yang Z, Zhao X, et al. A bone regeneration strategy via dual delivery of demineralized bone matrix powder and hypoxia-pretreated bone marrow stromal cells using an injectable self-healing hydrogel. Journal of Materials Chemistry B 2021;9(2):479–493. DOI: 10.1039/d0tb01924k.
  43. Verbicaro T, Giovanini AF, Zielak JC, et al. Osteocalcin immunohistochemical expression during repair of critical-sized bone defects treated with subcutaneous adipose tissue in rat and rabbit animal model. Braz Dent J 2013;24(6):559–564. DOI: 10.1590/0103-6440201302362.
  44. Wallner C, Abraham S, Wagner JM, et al. Local application of isogenic adipose-derived stem cells restores bone healing capacity in a type 2 diabetes model. Stem Cells Transl Med 2016;5(6):836–844. DOI: 10.5966/sctm.2015-0158.
  45. Yoshida Y, Matsubara H, Fang X, et al. Adipose-derived stem cell sheets accelerate bone healing in rat femoral defects. PloS one 2019;14(3):e0214488. DOI: 10.1371/journal.pone.0214488.
  46. Klug LG, Storer CLM, Sebastiani AM, et al. The influence of the protein Wnt10b as a marker of bone repair of critical size defects fille with autogenous adipose tissue graft: A study in rabbit calvaria. Brazilian Journal of Oral Sciences 2017;16:1–11. DOI: 10.20396/bjos.v16i0.8651053.
  47. Yuan X, Han L, Lin H, et al. The role of antimiR-26a-5p/biphasic calcium phosphate in repairing rat femoral defects. Int J Mol Med 2019;44(3):857–870. DOI: 10.3892/ijmm.2019.4249.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.