Fractal Dimension and Lacunarity Analysis in the Dentulous and Edentulous Mandibular Posterior Region Using Cone-beam Computed Tomography: A Cross-sectional Retrospective Study
Mohana Bhoraskar, Ceena Denny, N Srikant, Ravikiran Ongole, M Archana, Prejith Sampath
Citation Information :
Bhoraskar M, Denny C, Srikant N, Ongole R, Archana M, Sampath P. Fractal Dimension and Lacunarity Analysis in the Dentulous and Edentulous Mandibular Posterior Region Using Cone-beam Computed Tomography: A Cross-sectional Retrospective Study. J Contemp Dent Pract 2024; 25 (6):581-587.
Aims: This cross-sectional retrospective study was conducted to assess the differences in the microarchitecture of the trabecular bone of the posterior mandibular region at dentulous and edentulous sites with the help of fractal dimension (FD) and lacunarity using cone-beam computed tomography (CBCT).
Materials and methods: Ninety CBCT scans were analyzed for the purpose of the present study. Inclusion criteria included subjects with unilaterally missing mandibular molars or premolars and an with intact contralateral opposing tooth. The coronal view of the dentulous and edentulous sites was used, and the region of interest (ROI) was selected 2.6 mm below the apex of the tooth present. These images were then transferred to ImageJ Software, and fractal analysis was done using the box-counting method of the FracLac plug-in. A paired samples t-test was performed to compare the means of FD and lacunarity, and a Kendall correlation was performed to check correlations. A p-value less than 0.05 was considered to indicate statistical significance.
Results: Statistical analysis revealed that the mean FD of the edentulous side was significantly greater than that of the dentulous side (p-value = 0.011). Additionally, the mean lacunarity of the edentulous side was marginally significantly greater than that of the dentulous side (p-value = 0.089). A significant negative correlation was detected between the FD and lacunarity of the edentulous region (p-value = 0.017), and a marginally significant negative correlation was detected between edentulous lacunarity and dentulous lacunarity (p-value = 0.081).
Conclusion: The differences in occlusal forces exerted in dentulous and edentulous regions can lead to a change in the trabecular pattern of the bone in these regions. This change in the microarchitecture of bones can be detected by FD and lacunarity, which can further help us assess changes pre- and post-implant.
Clinical significance: The advanced technology, the assessment of microarchitecture of the bone has been made easy, using FD and lacunarity, as done in the present study. This analysis can further aid us in both pre- and post-implant analysis to prevent failure of the implant.
Bresin A, Johansson CB and Kiliaridis, S. Effects of occlusal strain on the development of the dentoalveolar process in the growing rat: A morphometric study. Eur J Exp Musculoskelet Res 1994;3:112–122.
Moon HS, Won YY, Kim KD, et al. The three-dimensional microstructure of the trabecular bone in the mandible. Surg Radiol Anat 2004;26(6):466–473. DOI: 10.1007/s00276-004-0247-x.
Donnelly E. Methods for assessing bone quality: A review. Clin Orthop Relat Res 2011;469(8):2128–2138. DOI: 10.1007/s11999-010-1702-0.
Tanaka T, Sakurai T, Kashima I. Structuring of parameters for assessing vertebral bone strength by star volume analysis using a morphological filter. J Bone Miner Metab 2001;19(3):150–158. DOI: 10.1007/s007740170035.
Stepan JJ. Techniques for measuring bone mineral density. Int Congr Ser 2002;1229(C):63–68. DOI: 10.1016/S0531-5131(01)00477-0.
Geraets WG. Comparison of two methods for measuring orientation. Bone 1998;23(4):383–388. DOI: 10.1016/s8756-3282(98)00117-3.
Rüegsegger P, Koller B, Müller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 1996;58(1):24–29. DOI: 10.1007/BF02509542. PMID: 8825235.
Kato CN, Barra SG, Tavares NP, et al. Use of fractal analysis in dental images: A systematic review. Dentomaxillofac Radiol 2020;49(2):20180457. DOI: 10.1259/dmfr.20180457.
Geraets WG, van der Stelt PF. Fractal properties of bone. Dentomaxillofac Radiol 2000;29(3):144–153. DOI: 10.1038/sj/dmfr/4600524.
Mandelbrot, Benoit B. and Mandelbrot, Benoit B. The fractal geometry of nature/Benoit B. Mandelbrot. Am Math Month 1984;91(9): 594–598. DOI: 10.2307/2323761.
Gefen Y, Aharony A, Mandelbrot BB. Phase transitions on fractals. III. Infinitely ramified lattices. J Phys A Math Gen 1984;17(6):1277–1289. DOI: 10.1088/0305-4470/17/6/024.
Parsa A, Ibrahim N, Hassan B, et al. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res 2015;26(1):e1–e7. DOI: 10.1111/clr.12315.
Patsch JM, Burghardt AJ, Kazakia G, et al. Noninvasive imaging of bone microarchitecture. Ann N Y Acad Sci 2011;1240:77–87. DOI: 10.1111/j.1749-6632.2011.06282.x.
Yasar F, Akgünlü F. Fractal dimension and lacunarity analysis of dental radiographs. Dentomaxillofac Radiol. 2005;34(5):261–267. DOI: 10.1259/dmfr/85149245.
Santos IG, Ramos de Faria F, da Silva Campos MJ, et al. Fractal dimension, lacunarity, and cortical thickness in the mandible: Analyzing differences between healthy men and women with cone-beam computed tomography. Imaging Sci Dent 2023;53(2):153–159. DOI: 10.5624/isd.20230042.
Misch CE. Density of bone: Effects on surgical approach and healing, In: Contemporary Implant Dentistry, C.E. Misch (ed), Canada: Mosby, Elsevier; 2008. pp. 645–667. ISBN 978-0-323-04373-1.
White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;88(5):628–635. DOI: 10.1016/s1079-2104(99) 70097-1.
Larheim TA, Abrahamsson AK, Kristensen M, et al. Temporomandibular joint diagnostics using CBCT. Dentomaxillofac Radiol 2015; 44(1):20140235. DOI: 10.1259/dmfr.20140235.
Alman AC, Johnson LR, Calverley DC, et al. Diagnostic capabilities of fractal dimension and mandibular cortical width to identify men and women with decreased bone mineral density. Osteoporos Int 2012;23(5):1631–1636. DOI: 10.1007/s00198-011-1678-y.
Coşgunarslan A, Soydan Çabuk D, et al. Effect of total edentulism on the internal bone structure of mandibular condyle: A preliminary study. Oral Radiol 2021;37(2):268–275. DOI: 10.1007/s11282-020-00444-z.
Yu YY, Chen H, Lin CH, et al. Fractal dimension analysis of periapical reactive bone in response to root canal treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107(2):283–288. DOI: 10.1016/j.tripleo.2008.05.047.
Torres SR, Chen CS, Leroux BG, et al. Fractal dimension evaluation of cone beam computed tomography in patients with bisphosphonate-associated osteonecrosis. Dentomaxillofac Radiol 2011;40(8):501–505. DOI: 10.1259/dmfr/14636637.
Bachtler R, Walter C, Schulze RKW. Fractal dimension in CBCT images as predictor for MRONJ: A retrospective cohort study. Clin Oral Investig 2021;25(4):2113–2118. DOI: 10.1007/s00784-020- 03523-x.
Arsan B, Köse TE, Çene E, Özcan İ. Assessment of the trabecular structure of mandibular condyles in patients with temporomandibular disorders using fractal analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2017;123(3):382–391. DOI: 10.1016/j.oooo.2016.11.005.
Kayipmaz S, Akçay S, Sezgin ÖS, et al. Trabecular structural changes in the mandibular condyle caused by degenerative osteoarthritis: A comparative study by cone-beam computed tomography imaging. Oral Radiol 2019;35(1):51–58. DOI: 10.1007/s11282-018-0324-1.
Muneer S, Vandana KL. Effect of different occlusal loads on periodontium: A three-dimensional finite element analysis. CODS J Dent 2016;8(2):78–90. DOI: 10.5005/jp-journals-10063-0018.
Amer ME, Heo MS, Brooks SL, et al. Anatomical variations of trabecular bone structure in intraoral radiographs using fractal and particles count analyses. Imaging Sci Dent 2012;42(1):5–12. DOI: 10.5624/isd.2012.42.1.5.
Gaalaas L, Henn L, Gaillard PR, et al. Analysis of trabecular bone using site-specific fractal values calculated from cone beam CT images. Oral Radiol. 2014;30(2):179–185. DOI: 10.1007/s11282-013- 0163-z.
Elani HW, Starr JR, Da Silva JD, et al. Trends in dental implant use in the U.S., 1999-2016, and projections to 2026. J Dent Res 2018;97(13):1424–1430. DOI: 10.1177/002203451879256730.
Lee CT, Huang YW, Zhu L, et al. Prevalences of peri-implantitis and peri-implant mucositis: Systematic review and meta-analysis. J Dent 2017;62:1–12. DOI: 10.1016/j.jdent.2017.04.011.