The Journal of Contemporary Dental Practice

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 7 ( July, 2024 ) > List of Articles

ORIGINAL RESEARCH

The Acoustic Emission Testing in the Evaluation of Fracture Toughness of Brittle Materials

Camille Haddad, Jean Gebran Eng, Amine el Zoghbi

Keywords : Acoustic emission test, Brittle ceramics, Fracture resistance, Monolithic zirconia, Sound harvesting test

Citation Information : Haddad C, Eng JG, el Zoghbi A. The Acoustic Emission Testing in the Evaluation of Fracture Toughness of Brittle Materials. J Contemp Dent Pract 2024; 25 (7):617-623.

DOI: 10.5005/jp-journals-10024-3722

License: CC BY-NC 4.0

Published Online: 30-10-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: Evaluating the fracture resistance of dental ceramics is essential for assessing their behavior. This study aimed to validate a custom load-to-fracture test for assessing fracture strength compared to a conventional method. Materials and methods: Acoustic emission testing, a non-destructive (ND) lab test, was employed to evaluate the fracture toughness (FT) of brittle materials by capturing sound waves generated by crack formation in failing samples. A total of 130 samples, divided into three types (glass sheets, zirconia sheets, and monolithic zirconia crowns), were tested. The fracture loads were measured using both custom and conventional methods. Results: The mean fracture loads for glass sheets were 650.46 N ± 110.38 (custom) compared to 691.41 N ± 155.92 (conventional). For zirconia sheets, the values were 95.25 N ± 7.78 (custom) vs 112.75 N ± 31.26 (conventional). Monolithic zirconia crowns showed mean fracture loads of 1108.99 N ± 327.89 (custom) compared to 1292.52 N ± 271.42 (conventional). Statistically significant differences were evident in all three types, indicating lower values with custom testing for all samples. Conclusion: The custom testing demonstrated an advantage in identifying cracks at lower loads, thereby enhancing the accuracy of fracture load values. Despite its limitations, the study suggests that the custom setup could be a viable alternative to conventional fracture load testing of brittle materials. However, further testing with more materials is recommended to enhance the results’ accuracy and generalizability. Clinical significance: The findings indicate that the custom load-to-fracture test can provide more accurate measurements of FT in dental ceramics, which is crucial for predicting their clinical performance and longevity.


PDF Share
  1. Nakamura T, Nakano Y, Usami H, et al. In vitro investigation of fracture load and aging resistance of high-speed sintered monolithic tooth-borne zirconia crowns. J Prosthodont Res 2020;64(2):182–187. DOI: 10.1016/j.jpor.2019.07.003.
  2. Brandeburski SB, Della Bona A. Quantitative and qualitative analyses of ceramic chipping. J Mech Behav Biomed Mater 2020;110:103928. DOI: 10.1016/j.jmbbm.2020.103928.
  3. Bergmann C, Stumpf A. Dental ceramics: Microstructure, properties, and degradation. Berlin: Springer Science and Business Media; 2013.
  4. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res 2018;97(2):140–147. DOI: 10.1177/0022034517737483.
  5. Li H, Li J, Yun X, et al. Non-destructive examination of interfacial debonding using acoustic emission. Dent Mater 2011;27(10):964–971. DOI: 10.1016/j.dental.2011.06.002.
  6. Zhao Z. Review of non-destructive testing methods for defect detection of ceramics. Ceram Int 2021;47(4):4389–4397. DOI: 10.1016/j.ceramint.2020.10.065.
  7. Tekin YH, Hayran Y. Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness. J Adv Prosthodont 2020;12(5):283. DOI: 10.4047/jap.2020.12.5.283.
  8. Ioannidis A, Bomze D, Hämmerle CHF, et al. Load-bearing capacity of CAD/CAM 3D-printed zirconia, CAD/CAM milled zirconia, and heat-pressed lithium disilicate ultra-thin occlusal veneers on molars. Dent Mater 2020;36(4):e109–e116. DOI: 10.1016/j.dental.2020.01.016.
  9. Abdulazeez MI, Majeed MA. Fracture strength of monolithic zirconia crowns with modified vertical preparation: A comparative in vitro study. Eur J Dent 2022;16(01):209–214. DOI: 10.1055/s-0041-1735427.
  10. Fischer H, Karaca F, Marx R. Detection of microscopic cracks in dental ceramic materials by fluorescent penetrant method. J Biomed Mater Res 2002;61(1):153–158. DOI: 10.1002/jbm.10148.
  11. Schirn A. ASTM E384-22: Test method for microindentation hardness. (2023). Available from: https://blog.ansi.org/astm-e384-22-microindentation-hardness-test-method/. [cited 2024 Mar 30].
  12. He Y, Li M, Meng Z, et al. An overview of acoustic emission inspection and monitoring technology in the key components of renewable energy systems. Mech Syst Signal Process 2021;148:107146. DOI: 10.1016/j.ymssp.2020.107146.
  13. Haddad C, Meyer JM, El Ahmadié M. Influence of the connector area on the chipping rate of the VM9 veneering ceramic in a posterior four-unit yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses: A pilot study Eur J Gen Dent 2021;10(03):144–150. DOI: 10.1055/s-0041-1736373.
  14. Mineo C, Javadi Y. Robotic non-destructive testing. Sensors 2022;22(19):7654. DOI: 10.3390/s22197654.
  15. Yuan M, Cao Z, Luo J, et al. Recent developments of acoustic energy harvesting: A review. Micromachines 2019;10(1):48. DOI: 10.3390/mi10010048.
  16. Ketata I, Ouerghemmi S, Fakhfakh A, et al. Design and implementation of low noise amplifier operating at 868 MHz for duty cycled wake-up receiver front-end. Electronics 2022;11(19):3235. DOI: 10.3390/electronics11193235.
  17. Liao G, Luan C, Wang Z, et al. Acoustic metamaterials: A review of theories, structures, fabrication approaches, and applications. Adv Mater Technol 2021;6(5):2000787. DOI: 10.1002/admt.202000787.
  18. Skjold A, Schriwer C, Gjerdet NR, et al. Fractographic analysis of 35 clinically fractured bi-layered and monolithic zirconia crowns. J Dent 2022;125:104271. DOI: 10.1016/j.jdent.2022.104271.
  19. Kumbhare VR, Kumar R, Majumder MK, et al. Highspeed interconnects: History, evolution, and the road ahead. IEEE Microwave 2022;23(8): 66–82. DOI: 10.1109/MMM.2021.3136268.
  20. Morscher GN, Ferguson C, Pratt S, et al. Acoustic emission accuracy from a tensile test of a ceramic matrix composite. Journal of the American Ceramic Society. 2024. DOI: 10.1111/jace.20104.
  21. Ellakwa A, Raju R, Sheng C, et al. Acoustic emission and finite element study on the influence of cusp angles on zirconia dental crowns. Dent Mater 2020;36(12):1524–1535. DOI: 10.1016/j.dental. 2020.09.007.
  22. Chen B, Wang Y, Yan Z. Use of acoustic emission and pattern recognition for crack detection of a large carbide anvil. Sensors (Basel) 2018;18(2):386. DOI: 10.3390/s18020386.
  23. Cesar PF, Miranda RBDP, Santos KF, et al. Recent advances in dental zirconia: 15 years of material and processing evolution. Dent Mater. 2024 May;40(5):824–836. DOI: 10.1016/j.dental.2024.02.026.
  24. Gali S, Gururaja S, Patel Z. Methodological approaches in graded dental ceramics. Dent Mater 2024;40(5):e1–e13. DOI: 10.1016/j.dental.2024.02.016.
  25. Mervin AB. Sound energy harvesting and converting electricity (SEHCE). Annals of Mathematics and Physics. 20224;5(2):146–149.
  26. Hidayanti F, Wati EK, Akbar H. Energy harvesting system design for converting noise into electrical energy. IJAST 2020;29(03). DOI: 10.1111/jace.20104.
  27. Yuan M, Cao Z, Luo J, Chou X. Recent developments of acoustic energy harvesting: A review. Micromachines (Basel) 2019;10(1):48. DOI: 10.3390/mi10010048.
  28. Introduction to the Amplifier and Amplifier Tutorial [Internet]. [cited 2024 Mar 25]. Available from: https://www.electronics-tutorials.ws/amplifier/amp_1.html.
  29. Ereifej N, Silikas N, Watts DC. Initial versus final fracture of metal-free crowns, analyzed via acoustic emission. Dent Mater 2008;24(9):1289–1295. DOI: 10.1016/j.dental.2008.04.010.
  30. Valandro LF, Cadore-Rodrigues AC, Dapieve KS, et al. A brief review on fatigue test of ceramic and some related matters in dentistry. J Mech Behav Biomed Mater 2023;138:105607. DOI: 10.1016/j.jmbbm.2022.105607.
  31. Kim K-H. Okuno O. Microfracture behaviour of composite resins containing irregular-shaped fillers. J Oral Rehabil 2002;29(12):1153–1159. DOI: 10.1046/j.1365-2842.2002.00940.x.
  32. Gdoutos E, Konsta-Gdoutos M. Nondestructive testing (NDT). In: Mechanical testing of materials. Solid mechanics and its applications, vol 275:201–225. Cham: Springer; 2024. DOI: 10.1007/978-3-031-45990-0_8.
  33. Wang L, Zhang Y, Zhang H, et al. Comparative study of acoustic emission and dye penetration techniques for crack detection in dental ceramics. J Mech Behav Biomed Mater 2017;67:9–16. DOI: 10.3390/s18020386.
  34. Wang B, Zhong S, Lee TL, Fancey KS, et al. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv Mech Eng 2020;12(4):168781402091376. DOI: 10.1177/168781402091376.
  35. Zhang X, Dong H, Wu X, et al. Evaluation of Er: YAG laser energy transmitted through novel dental zirconia ceramics. Dent Mater J 2023;42(5):669–675. DOI: 10.4012/dmj.2022-259.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.