Assessment of the Peri-implant Bone Density Following Bicortical Anchored Corticobasal Implants Placement in the Maxillary Arch: A Cross-sectional Prospective Study
Keywords :
Bicortical implants, Bone density, Cone-beam computed tomography, Corticobasal implant, Peri-implant bone density
Citation Information :
Doshi A, Patel J, Gaur V, Fernandes G, Awadalkreem F. Assessment of the Peri-implant Bone Density Following Bicortical Anchored Corticobasal Implants Placement in the Maxillary Arch: A Cross-sectional Prospective Study. J Contemp Dent Pract 2024; 25 (9):820-829.
Aim: The aim of this cross-sectional prospective study was to evaluate the bone density changes around the bicortical corticobasal implant placed in the maxilla over 18 months of follow-up using cone-beam computed tomography (CBCT), focusing on the comparison between the anterior and posterior teeth and regions.
Materials and methods: Thirty-five subjects (20, 53.26%, were males, and 15, 46.73%, were females) received 380 implants (Basal Cortical Screwable implant, BCS®) at Narsinhbhai Patel Dental College and Hospital, India. Implant survival and success were assessed using Albrektsson criteria for implant success. The peri-implant bone density values were measured using CBCT (Vatech PaX-i 3d Smart) and InVivo software (Anatomage, San Jose, California, USA) at the baseline (immediate postoperative) and at the 18-month follow-up visit. For standardization purposes, the bone density values for only the maxillary implants were measured at the level of the second implant thread in four sites: buccal, mesial, distal, and palatal, respectively. The recorded data were tabulated and grouped according to the tooth's region (anterior/posterior) and sites (mesial, distal, buccal, and palatal).
Results: The implant's survival rate was 100%. After 18 months, the bone density increased significantly (p < 0.05) in all the sites in both anterior and posterior regions. The study's findings revealed a higher bone density increase in the posterior region compared to the anterior region after 18 months of follow-up, except for the palatal site.
Conclusion: Within the limitations of this study, an increase in the peri-implant bone density has been associated with the use of corticobasal implants over time, with reported anterior/posterior regional variations.
Clinical significance: This study provides valuable insights into the bone density changes associated with bicortical corticobasal implants and emphasizes the importance of CBCT in evaluating bone density, as well as the significance of regional considerations in implant dentistry. By integrating these findings into clinical practice, clinicians can improve treatment outcomes and ensure long-term implant survival.
Awadalkreem F, Khalifa N, Satti A, et al. Rehabilitation of patients with compromised ridge support using immediately loaded corticobasal implant-supported prostheses: A prospective observational study. J Contemp Dent Pract 2023;23(10):971–978. DOI: 10.5005/jp-journals-10024-3416.
Lazarov A. Soft-tissue augmentation in periodontally compromised patients during immediate placement and immediate loading dental implant surgery – A retrospective study. Ann Maxillofac Surg 2023;13(1):37–43. DOI: 10.4103/ams.ams_207_22.
Pałka Ł, Lazarov A. Immediately loaded bicortical implants inserted in fresh extraction and healed sites in patients with and without a history of periodontal disease. Ann Maxillofac Surg 2019;9(2):371. DOI: 10.4103/ams.ams_147_19.
Lazarov A. Immediate functional loading: Results for the concept of the strategic implant®. Ann Maxillofac Surg 2019;9(1):78. DOI: 10.4103/ams.ams_250_18.
Ihde S, Ihde AA. Immediate loading: Guideline to successful implantology. Internat. Implant Foundation Publ.; 2012. 2nd ed, pp. 2–12.
Awadalkreem F, Khalifa N, Satti A, et al. The influence of immediately loaded basal implant treatment on patient satisfaction. Int J Dent 2020;2020:1–10. DOI: 10.1155/2020/6590202.
Sahoo SK, Mishra S, Chinnannavar SN, et al. Assessment of oral health-related quality of life in patients receiving corticobasal dental implants. J Pharm Bioallied Sci 2023;15(Suppl 2):S1036–S1039. DOI: 10.4103/jpbs.jpbs_236_23.
Awadalkreem F, Khalifa N, Satti A, et al. Rehabilitation of marginal mandibulectomy patients using immediately loaded basal implant-supported prostheses. J Oral Maxillofac Surg Med Pathol 2022;34:24–35. DOI.10.1016/j.ajoms.2021.07.002.
Gaur V, Doshi A, Gandhi S. Immediate prosthetic rehabilitation of marginal mandibulectomy post radiation case by single-piece implant – A case report. Ann Maxillofac Surg 2020;10(2):501. DOI: 10.4103/ams.ams_260_20.
Vitomir KS, Filip I, Vojkan L, et al. Survival rate of disk and screw-type implants used for the retention of extraoral prostheses. J Prosthet Dent 2022;127(3):499–507. DOI: 10.1016/j.prosdent.2020.07.023.
Awadalkreem F, Khalifa N, Ahmad AG, et al. Oral rehabilitation of maxillofacial trauma using fixed corticobasal implant-supported prostheses: A case series. Int J Surg Case Rep 2022;100:107769. DOI: 10.1016/j.ijscr.2022.107769.
Ihde S. Indications and treatment modalities with corticobasal jaw implants. Ann Maxillofac Surg 2019;9(2):379. DOI: 10.4103/ams.ams_142_19.
Ihde S, Ihde A, Lysenko V, et al. New systematic terminology of cortical bone areas for osseo-fixated implants in strategic oral implantology. JJ Anatomy 2016;1(2):7. Available from: https://www.semanticscholar.org/paper/Systematic-Terminology-of-Cortical-Bone-Areas-for-Ihde-Ihde/18cb3994ed3eeda8999148d20772eedc5b46b196.
Ihde S, Ihde A. Cookbook Mastication. 5th Edition, Munich: International Implant Foundation Publishing; 2021, ISBN 978-3-945889-29-9 xxxx.
Vadiati Saberi B, Khosravifard N, Ghandari F, et al. Detection of peri-implant bone defects using cone-beam computed tomography and digital periapical radiography with parallel and oblique projection. Imaging Sci Dent 2019;49(4):265. DOI: 10.5624/isd.2019.49.4.265.
Lim Y, Lim Y, Kim B, et al. A new method of measuring the volumetric change of alveolar bone around dental implants using computed tomography. J Clin Med 2020;9(4):1238. DOI: 10.3390/jcm9041238.
Park C, Kang S, Kim J, et al. Validation of bone mineral density measurement using quantitative CBCT image based on deep learning. Sci Rep 2023;13(1):11921. DOI: 10.1038/s41598-023- 38943-8.
González-García R, Monje F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: A histomorphometric analysis by micro-CT. Clinical Oral Implants Res 2013;24(8):871–879. DOI: 10.1111/j.1600- 0501.2011.02390.x.
Shapurian T, Damoulis PD, Reiser GM, et al. Quantitative evaluation of bone density using the Hounsfield index. Int J Oral Maxillofac Implants 2006;21(2):290–297. PMID: 16634501.
Schreiber JJ, Anderson PA, Hsu WK. Use of computed tomography for assessing bone mineral density. Neurosurg Focus 2014;37(1):E4. DOI: 10.3171/2014.5.FOCUS1483.
Turkyilmaz I, McGlumphy EA. Influence of bone density on implant stability parameters and implant success: A retrospective clinical study. BMC Oral Health 2008;8(1): 32. DOI: 10.1186/1472-6831- 8-32.
Sennerby L, Andersson P, Pagliani L, et al. Evaluation of a novel cone beam computed tomography scanner for bone density examinations in preoperative 3d reconstructions and correlation with primary implant stability. Clin Implant Dent Rel Res 2015;17(5):844–853. DOI: 10.1111/cid.12193.
Haghanifar S, Shafaroudi AM, Nasiri P, et al. Evaluation of bone density by cone-beam computed tomography and its relationship with primary stability of dental implants. Dent Res J (Isfahan) 2022;19:22. PMID: 35432788.
Hao Y, Zhao W, Wang Y, et al. Assessments of jaw bone density at implant sites using 3D cone-beam computed tomography. Eur Rev Med Pharmacol Sci 2014;18(9):1398–1403. PMID: 24867520.
Hussaini S, Glogauer M, Sheikh Z, et al. CBCT in dental implantology: A key tool for preventing peri-implantitis and enhancing patient outcomes. Dent J 2024;12(7):196. DOI: 10.3390/dj12070196.
Doyle DJ, Hendrix JM, Garmon EH. American Society of Anesthesiologists Classification. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441940/.
Antonina I, Lazarov A, Gaur V, et al. Consensus regarding 16 recognized and clinically proven methods and sub-methods for placing corticobasal® oral implants. Ann Maxillofac Surg 2020;10(2):457–462. DOI: 10.4103/ams.ams_62_20.
Misch CE, Perel ML, Wang H, et al. Implant success, survival, and failure: The International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant Dent 2008;17(1):5–15. DOI: 10.1097/ID.0b013e3181676059.
Albrektsson T, Zarb G, Worthington P, et al. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1(1):11–25. PMID: 3527955.
Clavien PA, Barkun J, de Oliveira ML, et al. The Clavien-Dindo classification of surgical complications. Ann Surg 2009;250(2):187–196. DOI: 10.1097/SLA.0b013e3181b13ca2.
Di Stefano DA, Arosio P, Capparè P, et al. Stability of dental implants and thickness of cortical bone: Clinical research and future perspectives. A systematic review. Materials 2021;14(23):7183. DOI: 10.3390/ma14237183.
Xiao Y, Lv L, Xu Z, et al. Correlation between peri-implant bone mineral density and primary implant stability based on artificial intelligence classification. Sci Rep 2024;14(1):3009. DOI: 10.1038/s41598-024-52930-7.
Wolf JH. [Julis Wolff and his “law of bone remodeling”]. Orthopade 1995;24:378–386. PMID: 7478499.
Doshi AG, Fernandes G, Patel JR, et al. Role of Wolff's Law in Basal Implantology. J Pharm Biol Sci 2023;18(3):32–36. DOI: 10.9790/3008-1803013236.
Bianchi AE, Dolci G, Sberna MT, et al. Factors affecting bone response around loaded titanium dental implants: A literature review. J Appl Biomater Biomech 2005;3(3):135–140. PMID: 20799218.
Flanagan D. Osseous remodeling around dental implants. J Oral Implantol 2019;45(3):239–246. DOI: 10.1563/aaid-joi-D-18-00130.
Issa NS, Othman TA, Sleman BM. A comparative radiographic study of bone density changes around titanium implants in the posterior mandible, preoperative, and postoperative. Ann Med Surg (Lond) 2024;86(6):3216–3221. DOI: 10.1097/MS9.0000000000002142.
Şahin S, Çehreli MC, Yalçın E. The influence of functional forces on the biomechanics of implant-supported prostheses—a review. J Dent 2002;30(7–8):271–282. DOI: 10.1016/s0300-5712(02)00065-9.
de Oliveira RCG, Leles CR, Normanha LM, et al. Assessments of trabecular bone density at implant sites on CT images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105(2):231–238. DOI: 10.1016/j.tripleo.2007.08.007.
Potapchuk AM, Onipko YL, Almashi VM, et al. Experimental study of bone rebuilding in the periimplantation area under immediate loading on dental implants. Wiad Lek 2021;74(4):992–997. PMID: 34156018.
Isidor F. Influence of forces on peri-implant bone. Clinical Oral Implants Res 2006;17(S2):8–18. DOI: 10.1111/j.1600-0501.2006.01360.x.
Barros RR, Degidi M, Novaes AB, et al. Osteocyte density in the peri-implant bone of immediately loaded and submerged dental implants. J Periodontol 2009;80(3):499–504. DOI: 10.1902/jop.2009. 080484.
Tumedei M, Piattelli A, Degidi M, et al. A narrative review of the histological and histomorphometrical evaluation of the peri-implant bone in loaded and unloaded dental implants. A 30-year experience (1988–2018). Int J Environ Res Public Health 2020;17(6):2088. DOI: 10.3390/ijerph17062088.
Mao C, Yu W, Li G, et al. Effects of immediate loading directionality on the mechanical sensing protein PIEZO1 expression and early-stage healing process of peri-implant bone. BioMed Eng OnLine 2024;23(1):36. DOI: 10.1186/s12938-024- 01223-1.
Pei F, Liu J, Zhang L, et al. The functions of mechanosensitive ion channels in tooth and bone tissues. Cell Signal. 2021;78:109877. DOI: 10.1016/j.cellsig.2020.109877.
Sun W, Chi S, Li Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. eLife 2019;8:e47454. DOI: 10.7554/eLife.47454.
Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontology 2000 2017;73(1):22–40. DOI: 10.1111/prd.12179.