Citation Information :
Medina J, Orellana-Arauco H, Chacon-Gonzales D, Perez-Suasnabar H, Galarza-Valencia D, Quispe-Tasayco L. Shear Strength of Adhesives Based on Solvent Type, Aged, and LED-cured with Different Wavelengths: An In Vitro Study. J Contemp Dent Pract 2024; 25 (9):846-850.
Objective: To evaluate the shear strength of adhesives based on the type of solvent (ethanol and acetone), aged and light-cured using light-emitting diode (LED) units with different wavelengths. Polywave and monowave LED units were employed for this in vitro study.
Materials and methods: Ninety bovine tooth samples were analyzed using OptiBond Universal adhesive (acetone) and single bond universal adhesive (ethanol). The samples underwent an aging process before being light-cured with different programs of polywave LED units (high-power, low-power, soft start) and monowave. Shear strength was measured using an Instron® Universal testing machine, with statistical analysis performed using ANOVA and the student's t-test.
Results: The adhesive with ethanol solvent, light-cured with polywave in high-power mode, achieved an average of 11.06 MPa, while low-power and soft start modes yielded 7.23 MPa and 10.82 MPa, respectively. The adhesive with acetone solvent, light-cured in high-power mode, had an average shear strength of 14.27 MPa, compared to 12.71 MPa in low-power mode and 12.92 MPa in soft start mode. No statistically significant differences were observed between the mean shear strengths of the groups treated with polywave and monowave LED units (p > 0.05).
Conclusion: The shear strength of adhesives with ethanol and acetone solvents varies depending on the light-curing program used, but no significant differences were found between the solvents when cured with polywave and monowave LED units. The choice of solvent type and light-curing program may influence adhesion properties.
Clinical significance: A careful selection of solvent and light-curing techniques for adhesives can enhance the quality and durability of dental restorations, improving adhesion and reducing micro leakage.
Eser I, Cicek O, Ozkalayci N, et al. Effect of different types of adhesive agents on orthodontic bracket shear bond strength: A cyclic loading study. Materials 2023;16(2):724. DOI: 10.3390/ma16020724.
Anusavice KJ, Shen C, Rawls HR, (Eds). Phillips’ Science of Dental Materials, 12th edition. Philadelphia: Elsevier Health Sciences. 2012. p. 592.
Azzeh E, Feldon PJ. Laser debonding of ceramic brackets: A comprehensive review. Am J Orthod Dentofacial Orthop 2003;123(1):79–83. DOI: 10.1067/mod.2003.2.
Vicente A, Bravo LA, Romero M, et al. Adhesion promoters: Effects on the bond strength of brackets. Am J Dent 2005;18(6):323–326. PMID: 16433400.
Bishara SE, Trulove TS. Comparisons of different debonding techniques for ceramic brackets: An in vitro study. Part I. Background and methods. Am J Orthod Dentofacial Orthop 1990;98(2):145–153. DOI: 10.1016/0889-5406(90)70008-z.
Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 1955;34(6):849–853. DOI: 10.1177/00220345550340060801.
Buzzitta VJ, Hallgren SE, Powers JM. Bond strength of orthodontic direct-bonding cement-bracket systems as studied in vitro. Am J Orthod 1982;81(2):87–92. DOI: 10.1016/0002-9416(82)90031-8.
Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 1997;25(6):435–440. DOI: 10.1016/s0300-5712(96)00063-2.
Banegas F, Vintimilla S, Morales B, et al. Effective use of eighth generation adhesives. Revista ADM Órgano Oficial de la Asociación Dental Mexicana 2022;79(5):284–291. DOI: 10.35366/107965.
Gan JK, Yap AU, Cheong JW, et al. Bulk-fill composites: effectiveness of cure with poly-and monowave curing lights and modes. Oper Dent 2018;43(2):136–143. DOI: 10.2341/16-304-L.
Derchi G, Vano M, Ceseracciu L, et al. Stiffness effect of using polywave or monowave LED units for photo-curing different bulk fill composites. Dent Mater J 2018;37(5):709–716. DOI: 10.4012/dmj.2017-278.
D'Altoé LF, França FMG, do Amaral FLB, et al. Influence of solvent volatilization time on the physical and mechanical properties of universal adhesive systems and on nanoleakage of the hybrid layer. International Journal of Adhesion and Adhesives 2022;113(5):103038. DOI: 10.1016/j.ijadhadh.2021.103038.
Morresi AL, D'Amario M, Capogreco M, et al. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J Mech Behav Biomed Mater 2014;29:295–308. DOI: 10.1016/j.jmbbm.2013.09.013.
Perdigao J. New developments in dental adhesion. Dent Clin North Am 2007;51(2):333–357. DOI: 10.1016/j.cden.2007.01.001.
Stangel I, Ellis TH, Sacher E. Adhesion to tooth structure mediated by contemporary bonding systems. Dent Clin North Am 2007;51(3):677–694. DOI: 10.1016/j.cden.2007.04.007.
Medina IH, Rivera JA, Grazioli G, et al. Resistencia de unión al cizallamiento de diferentes agentes de fijación a aleaciones metálicas odontológicas. Revista Cubana de Estomatologia 2023;60(1):4270. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext& pid=S0034-75072023000100005&lng=es& nrm=iso.
Rojas V, Gómez MI, Sampaio C, et al. Análisis comparativo in vitro de la resistencia adhesiva al cizallamiento de brackets metálicos adheridos a superficies dentarias tratadas con diferentes agentes blanqueadores. International journal of interdisciplinary dentistry 2021;14(1):17–21. DOI: 10.4067/S2452-55882021000100017.
Rovira M. Lámparas de fotopolimerización: Estado actual. Rev Oper Dent Endod 2006;5:29. Available from: http://www.infomed.es/rode/index.php?option=com_content&task=view&id=67&Itemid=32.
Aquino Valverde AJ, Aguilar Vargas GDP, Díaz Fernández JM, et al. Efectividad de fotopolimerización usando lámparas led: una revisión. Revista Científica Odontológica 2022;10(3):e120. DOI: 10.21142/2523- 2754-1003-2022-120.