Aim: The objective of this study is to assess the impact of three different surface etching techniques and two composite materials on surface roughness (Ra) and the shear bond strength (SBS) of clear aligner attachments bonded to monolithic zirconia (MZ).
Materials and methods: Sixty-six MZ disks were divided into three main groups (n = 22) according to the surface treatment method: group I: hydrofluoric acid (HFA) 9.5%, group II: 50 µm aluminum oxide (Al2O3) sandblasting, and group III: Er:Cr:YSGG laser. Each group was then subdivided into two subgroups according to the composite material (n = 11) used for bonding of the attachment, either packable composite Filtek Z350 or composite Filtek Z250. Clear aligner attachments were then bonded to the disks, and measurements of Ra and SBS were taken. Statistical analysis was carried out using the Kruskal−Wallis test and two-way analysis of variance.
Results: The HFA groups showed the highest SBS (11.29 ± 2.83 MPa) and Ra (0.82 µm), while the laser groups exhibited the lowest SBS (8.29 ± 2.38 MPa) and Ra (0.634 µm). In Filtek Z350, there was a significant difference observed between the subgroups regarding SBS but not in Filtek Z250 subgroups.
Conclusion: The 9.5% HFA provided the highest SBS value in comparison with Er:Cr:YSGG laser and sandblasting (p <0.05).
Clinical significance: This study has the potential to benefit both orthodontists and patients by providing insights into techniques that can improve the bond strength and longevity of clear aligner attachments to MZ.
Kravitz ND, Kusnoto B, BeGole E, et al. How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. Am J Orthod Dentofacial Orthop 2009;135(1):27–35. DOI: 10.1016/j.ajodo.2007.05.018.
Papadimitriou A, Mousoulea S, Gkantidis N, et al. Clinical effectiveness of Invisalign® orthodontic treatment: A systematic review. Prog Orthod 2018;19(1):1–24. DOI: 10.1186/s40510-018-0235-z.
Fujiyama K, Honjo T, Suzuki M, et al. Analysis of pain level in cases treated with Invisalign aligner: Comparison with fixed edgewise appliance therapy. Prog Orthod 2014;15(1):1–7. DOI: 10.1186/s40510-014-0064-7.
Sheridan JJ, LeDoux W, McMinn R. Essix retainers: Fabrication and supervision for permanent retention. J Clin Orthod 1993;27(1):37–45. PMID: 8478438.
Krieger E, Seiferth J, Marinello I, et al. Invisalign® treatment in the anterior region. J Orofac Orthop 2012;73(5):365−376. DOI: 10.1007/s00056-012-0097-9.
Yang B, Barloi A, Kern M. Influence of air-abrasion on zirconia ceramic bonding using an adhesive composite resin. Dent Mater 2010;26(1):44–50. DOI: 10.1016/j.dental.2009.08.008.
Al-Dohan HM, Yaman P, Dennison JB, et al. Shear strength of core-veneer interface in bi-layered ceramics. J Prosthet Dent 2004;91(4):349–355. DOI: 10.1016/j.prosdent.2004.02.009.
Attia A, Kern M. Long-term resin bonding to zirconia ceramic with a new universal primer. J Prosthet Dent 2011;106(5):319–327. DOI: 10.1016/S0022-3913(11)60137-6.
Kunt GE, Duran I. Effects of laser treatments on surface roughness of zirconium oxide ceramics. BMC Oral Health 2018;18(1):222. DOI: 10.1186/s12903-018-0688-y.
Kasraei S, Rezaei-Soufi L, Heidari B, et al. Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic. Restor Dent Endod 2014;39(4):296–302. DOI: 10.5395/rde.2014.39.4.296.
Kirmali O, Barutcigil Ç, Ozarslan MM, et al. Repair bond strength of composite resin to sandblasted and laser irradiated Y-TZP ceramic surfaces. Scanning 2015;37(3):186–192. DOI: 10.1002/sca.21197.
Weckmann J, Scharf S, Graf I, et al. Influence of attachment bonding protocol on precision of the attachment in aligner treatments. J Orofac Orthop 2020;81(1):30–40. DOI: 10.1007/s00056-019-00204-7.
Francisco I, Travassos R, Nunes C, et al. What is the most effective technique for bonding brackets on ceramic—A systematic review and meta-analysis. Bioengineering 2022;9(1):14. DOI: 10.3390/bioengineering9010014.
Goracci C, Di Bello G, Franchi L, et al. Bracket bonding to all-ceramic materials with universal adhesives. Materials (Basel) 2022;15(3):1245. DOI: 10.3390/ma15031245.
Jungbauer R, Kirschneck C, Hammer CM, et al. Orthodontic bonding to silicate ceramics: Impact of different pretreatment methods on shear bond strength between ceramic restorations and ceramic brackets. Clin Oral Investig 2022;26(3):2827–2837. DOI: 10.1007/s00784-021-04260-5.
Jungbauer R, Proff P, Edelhoff D, et al. Impact of different pretreatments and attachment materials on shear bond strength between monolithic zirconia restorations and metal brackets. Sci Rep 2022;12(1):8514. DOI: 10.1038/s41598-022-12542-5.
Arslan S, Kilinc H. Evaluation of the effects of different composite materials and surface roughening techniques in bonding attachments of clear aligner on monolithic zirconia. Orthod Craniofac Res 2023;26(4):546–551. DOI: 10.1111/ocr.12643.
Alsaud BA, Hajjaj MS, Masoud AI, et al. Bonding of clear aligner composite attachments to ceramic materials: An in vitro study. Materials (Basel) 2022;15(12):4145. DOI: 10.3390/ma15124145.
Silva AL, de Godoi APT, Facury AGBF, et al. Comparison of the shear bond strength between metal brackets and TransbondTM XT, FiltekTM Z250 and FiltekTM Z350 before and after gastroesophageal reflux: An in vitro study. Int Orthod 2022;20(3):100664. DOI: 10.1016/j.ortho.2022.100664.
Santos MSC, Pereira CP, Silva ARC, et al. The shear strength of orthodontic attachments made from different composites and glued in enamel conditioned by two different techniques. Int J Exp Dent Sci 2023;10(2):58–62. DOI: 10.5005/jp-journals-10029-1233.
Chen W, Qian L, Qian Y, et al. Comparative study of three composite materials in bonding attachments for clear aligners. Orthod Craniofac Res 2021;24(4):520–527. DOI: 10.1111/ocr.12465.
Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999;27(2):89–99. DOI: 10.1016/s0300-5712(98)00037-2.
Kurt İ, Çehreli ZC, Özçırpıcı AA, et al. Biomechanical evaluation between orthodontic attachment and three different materials after various surface treatments: A three-dimensional optical profilometry analysis. Angle Orthod 2019;89(5):742–750. DOI: 10.2319/072918-547.1.
Kittipibul P, Godfrey K. In vitro shearing force testing of the Australian zirconia-based ceramic Begg bracket. Am J Orthod Dentofacial Orthop 1995;108(3):308–315. DOI: 10.1016/s0889-5406(95)70026-9.
Sadid-Zadeh R, Strazzella A, Li R, et al. Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement. J Prosthet Dent 2021;126(5):693–697. DOI: 10.1016/j.prosdent.2020.09.016.
Nemeth BR, Wiltshire WA, Lavelle CLB. Shear/peel bond strength of orthodontic attachments to moist and dry enamel. Am J Orthod Dentofacial Orthop 2006;129(3):396–401. DOI: 10.1016/j.ajodo.2004.12.017.
Ferreira EA, Souza-Gabriel AE, Silva-Sousa YTC, et al. Shear bond strength and ultrastructural interface analysis of different adhesive systems to bleached dentin. Microsc Res Tech 2011;74(3):244–250. DOI: 10.1002/jemt.20895.
Ersu B, Yuzugullu B, Yazici AR, et al. Surface roughness and bond strengths of glass-infiltrated alumina-ceramics prepared using various surface treatments. J Dent 2009;37(11):848–856. DOI: 10.1016/j.jdent.2009.06.017.
Reddy SM, Vijitha D, Deepak T, et al. Evaluation of shear bond strength of zirconia bonded to dentin after various surface treatments of zirconia. J Indian Prosthodont Soc 2014;14(1):38–41. DOI: 10.1007/s13191-012-0198-6.
Liang Z, Liu Y, Jiang Y, et al. Effect of hot etching with HF on the surface topography and bond strength of zirconia. Front Mater 2022;9:1008704. DOI: 10.3389/fmats.2022.1008704.
Dikicier S, Korkmaz C, Atay A. Surface roughness and characteristics of CAD/CAM zirconia and glass ceramics after combined treatment procedures. BMC Oral Health 2022;22(1):524. DOI: 10.1186/s12903-022-02389-7.
Zhang Q, Yao C, Yuan C, et al. Evaluation of surface properties and shear bond strength of zirconia substructure after sandblasting and acid etching. Mater Res Express 2020;7(9):95403. DOI: 10.1088/2053-1591/abb5c9.
Akay C, Okşayan R, Özdemir H. Influence of various types of surface modifications on the shear bond strength of orthodontic brackets on Y-TZP zirconia ceramics. J Aust Ceram Soc 2020;56(1):1435–1439. DOI: 10.1007/s41779-020-00479-9.
Yassaei S, Aghili HA, Davari A, et al. Effect of four methods of surface treatment on shear bond strength of orthodontic brackets to zirconium. J Dent (Tehran) 2015;12:281–289. PMID: 26622283.
Mehmeti B, Kelmendi J, Iiljazi-Shahiqi D, et al. Comparison of shear bond strength orthodontic brackets bonded to zirconia and lithium disilicate crowns. Acta Stomatol Croat 2019;53(1):17–27. DOI: 10.15644/asc53/1/2.
Ahmed T, Fareen N, Alam MK. The effect of surface treatment and thermocycling on the shear bond strength of orthodontic brackets to the Y-TZP zirconia ceramics: A systematic review. Dental Press J Orthod 2021;26(5):e212118. DOI: 10.1590/2177-6709.26.5.e212118.oar.
Bajraktarova-Valjakova E, Grozdanov A, Guguvcevski L, et al. Acid etching as surface treatment method for luting of glass-ceramic restorations, part 1: Acids, application protocol and etching effectiveness. Open Access Maced J Med Sci 2018;6(3):568–573. DOI: 10.3889/oamjms.2018.147.
Yu M-K, Lim M-J, Na N-R, et al. Effect of hydrofluoric acid-based etchant at an elevated temperature on the bond strength and surface topography of Y-TZP ceramics. Restor Dent Endod 2020;45(1):e6. DOI: 10.5395/rde.2020.45.e6.
Smielak B, Klimek L. Effect of hydrofluoric acid concentration and etching duration on select surface roughness parameters for zirconia. J Prosthet Dent 2015;113(6):596–602. DOI: 10.1016/j.prosdent.2015.01.001.
García-Sanz V, Gallardo V, Bellot-Arcís C, et al. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia. PLoS One 2017;12(10):e0186796. DOI: 10.1371/journal.pone.0186796.
El-Wahab AA, Shamaa M, Hafez A, et al. Shear bond strength of orthodontic brackets bonded to a new version of zirconium all ceramic restoration: An in vitro comparative study. Heliyon 2023;9(5):e16249. DOI: 10.1016/j.heliyon.2023.e16249.
Hobson RS, Ledvinka J, Meechan JG. The effect of moisture and blood contamination on bond strength of a new orthodontic bonding material. Am J Orthod Dentofacial Orthop 2001;120(1):54–57. DOI: 10.1067/mod.2001.115037.
Zeidan LC, Esteves CM, Oliveira JA, et al. Effect of different power settings of Er,Cr:YSGG laser before or after tribosilicatization on the microshear bond strength between zirconia and two types of cements. Lasers Med Sci 2018;33(2):233–240. DOI: 10.1007/s10103-017-2343-2.
Barutcigil K, Kirmali O. The effect of different surface treatments on repair with composite resin of ceramic. Niger J Clin Pract 2020;23:355–361. DOI: 10.4103/njcp.njcp_409_19.
Saade J, Skienhe H, Ounsi H, et al. Effect of different combinations of surface treatment on adhesion of resin composite to zirconia. Clin Cosmet Investig Dent 2019;11:119–129. DOI: 10.2147/CCIDE. S204986.
Ghoveizi R, Maleki M, Mir M, et al. Effect of different power outputs of Er:YAG laser on shear bond strength of resin cement to zirconia in comparison to sandblasting. Lasers Dent Sci 2022;6(1):41–46. DOI: 10.1007/s41547-022-00146-1.