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ABSTRACT

In the recent past, numerous inflammation-mediated molecular 
pathways have been explored and studied as important events 
in carcinogenesis with respect to oral squamous cell carcinoma 
(OSCC). These pathways are engaged in numerous stages 
during tumorigenesis; which includes processes, like initiation, 
promotion, malignant conversion, invasion and metastasis. 
The inflammation-mediated/related carcinogenesis pathways 
reported in OSCC involves COX-2, epidermal growth factor 
receptor (EGFR), p38α MAP kinase, NF-κB, STAT, RhoC, 
PPARγ, etc. Many researchers are trying to target these 
pathways to explore more effective therapeutic interventions in 
OSCC. The aim of the present paper is to briefly discuss these 
pathways, with special emphasis on the therapeutic utilities. 
The therapeutic targets for the aforementioned pathways were 
searched in databases pubmed and scopus with no restriction 
to date of publication. Articles published in English medical 
literature on OSCC were selected for discussion. The recent 
combinations, modifications in dosage and frequency, or the 
use of new anti-inflammatory compounds, may exemplify the 
next generation care for OSCC.

Keywords: AP-1, Cancer-associated inflammation, Connec-
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INTRODUCTION

Worldwide, oral squamous cell carcinoma (OSCC) is 
the sixth most common type of cancer, while in certain 
developing countries its frequency is very high with 
dramatic implications for public health.1-3 Nonetheless, 
a number of socioeconomic and related factors impede 
prevention and/or early discovery, as a result patients 
with OSCC frequently report with advanced stages of 
the disease. Despite recent advances in surgery, radiation 
and chemotherapy, prognosis for OSCC remains dismal 
with minimal improvement has been seen in the past 
few decades.4,5 Furthermore, the probability of a second 
primary upper aerodigestive tract malignancy stands 
high among the survivors.6-8

The aforementioned discouraging facts and figures 
mandate the need for advancements of novel cancer treat-
ment and therapy for patients with OSCC. It is generally 
agreed that knowledge of molecular mechanisms under-
lying the pathogenesis and progression of OSCC is crucial 
for the development of more rational and successful 
techniques and practices for its prompt diagnosis, accu-
rate prognostication and effective treatment. Although 
our knowledge of the molecular basis of OSCC remains 
limited, a number of cellular and molecular events that 
underline the occurrence and progression of OSCC are 
gradually unfolding, including—oncogenic alterations 
and dysregulation of cell death mechanisms.9-11 Among 
the discovered and explored molecular pathways, 
inflammation-mediated carcinogenesis holds one of the 
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most assuring tool for the therapeutic targets in OSCC. 
Inflammation is depicted in various stages of tumor 
development namely initiation, promotion, malignant 
conversion, invasion and metastasis. Therefore, cancer-
related inflammation has been aptly suggested to repre-
sent the seventh trademark of cancer.12

The inflammation-mediated/related carcinogen-
esis pathways reported in OSCC are COX-2, epidermal 
growth factor receptor (EGFR), p38α MAP kinase, NF-κB, 
STAT, RhoC, PPARγ, etc. The aim of this paper is to 
briefly discuss these pathways with special emphasis 
on the therapeutic opportunities. The English medical 
literature was searched using databases, such as PubMed 
and scopus. The search terms used are the aforemen-
tioned molecular pathways. In the present paper, article 
pertaining to OSCC chemoprevention and/or treatment 
(patients/cell lines) were selected for the review and 
discussion. The abbreviations used are shown in Table 1.

Pathogenesis of Inflammation-mediated 
Carcinogenesis 

Several lines of evidences, including general or cell-specific 
gene inactivation and population-based studies, are 
consistent and coherent with the view that inflammation 
plays a significant role in the progression of malignancy 
(Table 2).13 Cytokines, chemokines, prostaglandins and 
reactive oxygen and nitrogen radicals accumulate in 
the microenvironment of tissues affected by chronic 
inflammatory reaction. If persistent, these inflammatory 

factors have the potential to induce cell proliferation 
and stimulate prolonged cell survival through activation 
of oncogenes and subsequent inactivation of tumor-
suppressor genes. This may result in genetic instability 
with an increased risk of cancer (the affected tissue becomes 
potentially malignant).14 Hence, in our classification of 
oral potentially—malignant-disorders, we have included 
a separate category for such lesions called ‘group II: 
morphologically altered tissue in which chronic persistent 
inflammation is responsible for malignant transformation 
(chronic inflammation-mediated carcinogenesis)’.15-17 
Once an inflammatory microenvironment has been 
established, reciprocal interactions between the evolving 
tumor cells and their stromal cells sustain cancer cell 
proliferation and promote the progression of tumor. 
Common transcription factors that normally regulate 
genes producing inflammatory mediators and genes 
controlling cell survival and proliferation are the link 
between cancer and inflammation. Hence, inflammation-
mediated pathways in carcinogenesis demonstrate 
to be crucial therapeutic targets especially in cancer 
chemoprevention.

Inflammation-mediated Targets in 
Therapy of OSCC

Cyclooxygenase 2 Inhibitors: Cyclooxygenase (COX), also 
known as prostaglandin synthase, is the rate-limiting 
enzyme that accounts for the conversion of arachidonic 
acid into numerous prostaglandins, a family of lipid 
mediators which have extensive and varied biological 
functions.18 Two distinct isoforms of COX have been 
found: COX-1 and COX-2. The COX-2 gene, located 
at chromosome 1q25.2 to 25.3, comprises of 10 exons 
and nine introns. Along with Hogness box, CAAT/
enhancer binding protein and cAMP response elements 
in the 5’-terminal nucleotide sequence, the gene is 
approximately 8.3 kb in size.19 Certain binding sites are 
also present in the gene sequence, such as the activator 

Table 2. The links between cancer and inflammation13

Sl. no. The links between cancer and inflammation
1 Chronic inflammation increases risk of cancer, and 

many cancers arise at sites of chronic inflammation
2 The immune cells that mediate chronic inflammation 

are found in cancers and promote tumor growth in cell 
transfer experiments

3 The chemical mediators that regulate inflammation are 
produced by cancers

4 Deletion or inhibition of inflammatory mediators inhibits 
development of experimental cancers

5 Genetic variations in inflammatory genes alter 
susceptibility to and severity of cancer

6 Long-term use of nonsteroidal anti-inflammatory agents 
reduces risk of some cancers

Table 1: The list of abbreviations used in the article

Abbreviation
Akt Protein Kinase B
AP-1 Activator protein 1
Bcl-2 B-cell lymphoma 2
c-Jun A protein encoded by the JUN gene
COX-2 Cyclooxygenase 2
EGFR Epidermal growth factor receptor
ERK Extracellular-signal-regulated kinases
FAK Focal adhesion kinase
HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A
IL-1β Interleukin 1 beta
MCL-1 Myeloid leukemia cell differentiation protein
mTOR Mammalian target of rapamycin
NF-κB Nuclear factor kappa-light-chain-enhancer of 

activated B cells
p38 MAP p38 mitogen-activated protein
PI3k Phosphoinositide (PI) 3-kinase
RhoC Ras homolog gene family, member C
SAP-kinase Stress-activated protein kinase
STAT Signal transducer and activator of transcription 

pathway
TNF-α Tumor necrosis factor alpha
PPARs Peroxisome proliferator-activated receptors
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protein-2 (AP-2) binding site and the nuclear factor-kappa 
B (NF-κB) binding site.20 COX-2 is composed of 604 amino 
acid residues and its expression is absent in normal tissues 
and organs under physiological conditions, except the 
constituted expression in kidney and brain. It can be 
activated in response to certain stimuli, such as cytokines 
and growth factors.

Cyclooxygenase-2 is involved in several pathological 
processes, such as inflammation and carcinogenesis.21 
Several inflammation networks have been confirmed to 
play vital roles in the microenvironment of carcinogenesis, 
and COX-2/PGE2 network is the most significant path-
way.22,23 The COX-2-mediated intracellular oncogenic 
pathways ensure in sustained cell survival, amplified 
cell proliferation and migration and neoangiogenesis. 
A positive feedback loop is created, whereby COX-2 
ultimately upregulates its own expression resulting in 
increased production of prostaglandin E-2, perpetuating 
a malignant cycle.14 Thus, COX-2 pathways are potential 
targets for therapeutic intervention in OSCC treatment. 
In vitro studies have displayed that nonsteroidal anti-
inflammatory drugs (NSAIDs) may potentially encourage 
apoptosis in several cancers including colon, hepatocellu-
lar, prostate and OSCC by hindering the COX-2 pathway. 
Cyclooxygenase-2 inhibition has been demonstrated to 
result in cell growth inhibition in OSCC cell lines.24 The 
dysplastic mucosa of OSCC patients presented expression 
of COX-2 at distinctive stages of carcinogenesis but not 
in normal mucosa.25 This suggests a likely role of COX-2 
inhibition in OSCC chemoprevention. Studies using the 
COX-2 inhibitor as a single agent in oral premalignant 
lesions displayed evidence of regression in dysplasia.26 
A number of chemopreventive and therapeutic trials in 
OSCC using COX-2 inhibitors are underway.27 Studies 
also indicate that NSAIDs may have a similar effect in 
retarding OSCC cell lines growth.28

Celecoxib, a NSAID that selectively inhibits COX-2, 
has displayed an important anti-carcinogenic effect for 
the treatment of OSCC. Oral squamous cell carcinoma is 
characterized by over activation of the Akt (also known 
as protein kinase B) signaling pathway which regulates 
cellular processes, such as metabolism, cell size, prolifera-
tion, invasion and apoptosis; thus, ultimately regulating 
cell growth and endurance.29 Thus, drugs that target 
Akt directly or indirectly via its signaling pathway, 
are likely candidates for OSCC treatment. Apoptosis 
induced by COX-2 inhibitors is associated not only with 
the attenuation of Akt and its subsequent effectors, such 
as Bcl-2-associated death promoter and procaspase-9, 
but also with diminished levels of the antiapoptotic 
protein MCL-1 and the phosphorylated SAP-kinase; 
which signifies that these proteins could be possible 

COX-2-inhibitors’ targets for cancer. A new celecoxib 
analog (3-phosphoinositide-dependent protein kinase-1 
inhibitor) potentially inhibited tumor growth, while 
inhibiting Akt signaling and disabling breast cancer cells 
that overexpress EGFR.30,31 This new celecoxib analog has 
spawned research opportunities for trials in treatment 
and chemoprevention of OSCC.

Epidermal growth factor receptor signaling con-
tributes in the management of cell proliferation and 
differentiation during development and, in tumor cells, 
contributes to proliferation, invasion and metastasis. 
It is directly/indirectly associated with inflammation-
mediated carcinogenesis. The literature suggests the 
link between COX-2 and EGFR (COX-2 mediated trans-
activation of EGFR). Thus, therapeutically targeting these 
two pathways can synergistically or additively block 
OSCC progression and growth.24,32-34 The combination of 
erlotinib and celecoxib has been exhibited to synergisti-
cally constrain OSCC cancer cell growth in preclinical 
studies.24-32 Recently, Saba et al reported positive results 
of a phase I clinical trial and pharmacokinetic studies of 
this combination in oral premalignant lesions.34

Connective tissue growth factor: Recently, Chuang et al 
reported that connective tissue growth factor (CTGF) 
intervenes down-regulation of COX-2 and reduction in 
migration of OSCC cells.35 Connective tissue growth factor 
belongs to the CCN family. This family consists of six 
members including CTGF, and all possess an N-terminal 
signal peptide, distinguishing them as secreted proteins.36 
Connective tissue growth factors probably carry out their 
biological activity through binding and activating of the 
cell surface integrins.36 The CTGF constraints COX-2 
expression by binding to the αvβ5 integrin receptor and 
reduction of FAK, PI3K and Akt, which inhibits binding 
of c-Jun to AP-1 site; resulting in diminution of tumor 
migration.35 A better understanding of the functions and 
interactions of CTGF can open newer avenues to wider 
and effective use of these proteins in the treatment and 
chemoprevention of OSCC.

p38 Mitogen-activated protein kinase: The p38 mito-
gen-activated protein (p38 MAP) kinase pathway is 
involved in inflammation, cell differentiation, growth, 
apoptosis and proinflammatory cytokines’—TNF-α and 
IL-1β production. The overproduced cytokines play an 
important role in supporting the proinflammatory mic-
roenvironment of the tumor. There are four isoforms of 
p38MAPK: α, β, γ and δ. All mitogen-activated protein 
kinases (MAPK) pathways operate through sequential 
phosphorylation events, phosphorylating transcription 
factors and regulate gene expression. These MAP kinases 
are activated by dual phosphorylation of threonine and 
tyrosine residues in ‘TXY’ (where X is Gly in case of p38α) 
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and further activate transcription factors, by phosphoryla-
tion using adenosine triphosphate as a substrate. They 
can also phosphorylate cytosolic targets for regulation of 
intracellular events. Mitogen-activated protein kinases 
are phosphorylated and stimulated by MAPK kinases 
(MKKs), which in turn are phosphorylated and activated 
by MKK kinases (proto-oncogene serine/threonine-
protein kinase and MKKK).37 The final objective of this 
cascade is the regulation of cellular proliferation, differen-
tiation, development, regulation of cell cycle, induction of 
G2/M checkpoint due to double stranded breaks in DNA 
during somatic recombination in B cells, and transmission 
of oncogenic signals via gene transcription.38 Significantly 
high levels of p38α MAPK have been associated with 
OSCC.39 Hence, p38α MAP kinase inhibitor can be a po-
tential therapeutic agent against OSCC. Gill K et al have 
designed a tetrapeptide, VWCS as p38α inhibitor on the 
basis of structural information of the ATP binding sites 
using molecular modeling.40 It potentially repressed cell 
growth and induced apoptosis in OSCC prompting the 
future scope for in vivo studies.40 The hemolytic studies 
revealed that the peptide was virtually nontoxic to 
human erythrocytes. This characteristic of the peptide 
exhibited that it can be delivered via the intravenous 
route, although further evaluation is essential.

NF-κB and STAT: Inflammatory mediators have the 
capacity to activate the nuclear signal transducers and 
activators of transcription-3, the AP-1 and the nuclear 
factor-κB (NF-kB). The nuclear factor-κB transcription 
factors and the signaling pathways are central coordina-
tors in innate and adaptive immune responses. Signal 
transducer and activator of transcription (STAT) proteins 
are a family of cytoplasmic transcription factors consist-
ing of seven members—STAT1 to STAT6, STAT5a and 
STAT5b.41 STAT3 and 5 are constantly stimulated in many 
human cancer cell lines. They are not only involved in 
cancer development and progression but also contribute 
to their survival.42 STAT3 regulates the expression of a 
variety of genes in response to cellular stimuli, and thus 
play a crucial role in cell growth and apoptosis. The 
activation and interaction between STAT3 and NF-κB 
plays a dynamic role in controlling the communica-
tion between cancer cells and inflammatory cells. The 
NF-κB and STAT3 are two major factors administrating 
the ability of preneoplastic and malignant cells to resist 
apoptosis-based tumor-surveillance and regulating 
tumor angiogenesis and invasiveness. Comprehend-
ing the molecular mechanisms of NF-κB and STAT3 
cooperation in cancer will offer opportunities for the 
design of new chemopreventive and chemotherapeutic 
approaches.43 

Vander Broek et al reviewed several such agents that 
inhibit the NF-κB pathway in OSCC.44 Retinoids (tocophe-
rols and tocotrienols) have been studied most extensively 
but have displayed limited potential in human trials. 
Epidermal growth factor receptor inhibitors and PI3K-
mTOR inhibitors (rapamycin) might benefit a subset of 
patients. Other agents, like green tea extracts and cur-
cumin are appealing and popular because they are gener-
ally regarded safe. In a stark contrast, there is evidence 
that vitamin E supplementation may actually increase 
the mortality rate in cancer patients. Natural compounds, 
like berry extracts, genistein (natural isoflavonoid found 
in soybeans) and resveratrol (natural phenol found in 
grape skins) act through NF-κB pathways. The other 
NF-κB-inhibitory compounds currently being tested 
for their chemopreventive potential are: pomegranate 
juice, luteolin, lycopene, and other fruit and vegetable 
extracts. Future research is required to develop agents 
with minimal toxicity and higher specificity for the NF-κB 
pathway, and targeting these therapies to individual 
patients’ genetic signatures should help to escalate the 
utility of these agents for OSCC chemoprevention.40

Guggulsterone (GS), [4,17(20)-pregnadiene-3, 
16-dione], derived from the plant Commiphora mukul, 
inhibits inducible nitric oxide synthetase and NF-κB 
induced by various carcinogens and tumor promoters, and 
thus restrains inflammation.45,46 It is reported that treatment 
with GS induces apoptosis and repress proliferation of a 
wide variety of human tumor cell types.45-50 Guggulsterone 
inhibits invasion, angiogenesis and metastasis of tumor 
cells and shows reversal of chemoresistance.48-50 
It has also been depicted to obstruct both constitutive 
and inducible STAT3 pathways in head and neck cancer 
cell lines.51,52 Recently, Leeman-Neill et al showed that 
anti-proliferative effects of GS are partially reliant on 
STAT3 inactivation.51 They presented that striking down 
the expression of STAT3 using small interfering RNA in 
OSCC cells reduced GS-induced cell death as compared 
to the no transfection controls.

Recently, Macha et al reported inhibition of the acti-
vation of NF-κB and STAT3 proteins in OSCC cells by 
guggulsterone.53 Importantly, treatment of OSCC cells 
with guggulsterone abrogated both smokeless tobacco 
and nicotine-induced nuclear activation of NF-κB and 
pSTAT3 proteins, and their downstream targets COX-2 
and vascular endothelial growth factor. Furthermore, 
guggulsterone treatment decreased the levels of smoke-
less tobacco and nicotine-induced interleukin-6 secretions 
in culture media of OSCC cells. Guggulsterone treatment 
not only inhibited proliferation, but also induced apop-
tosis by abrogating the effects of smokeless tobacco and 
nicotine on PI3K/Akt pathway in OSCC cells.54



Inflammation and Oral Cancer: An Update Review on Targeted Therapies

The Journal of Contemporary Dental Practice, July 2015;16(7):595-602 599

JCDP

RhoC: Among the Ras homology protein family, RhoC 
has been associated with a wide range of cellular acti-
vities, including downstream expression of inflammatory 
genes and chemokines, cell proliferation, intracellular 
signaling, and cytoskeletal organization.55 Fascinatingly, 
overexpression of RhoC has been documented in inflam-
matory breast cancer and exclusively in invasive breast 
carcinoma.56,57

A handful of studies have investigated the role of 
RhoC in OSCC till date. Studies on gene expression 
profiling of stage III and IV regionally-metastatic OSCC 
expressed that there are elevated levels of RhoC when 
compared to stage I and II localized malignancy.58 
Furthermore, an elevated RhoC expression in tumors of 
patients with OSCC was noted when compared to normal 
squamous cell epithelium.59 It is also accounted that 
increased RhoC expression is fervently associated with 
lymph node metastasis and could also be used to predict 
metastasis even in small primary tumors (T1, T2).60 
Recently, Kleer et al investigated the role of RhoC in 
head and neck metastasis by hindering its function using 
RNA interference (RNAi).60 In vitro findings revealed that 
inhibiting RhoC function ardently reduced cell motility 
and invasion. Furthermore, there was an astonishing fall 
in tumor metastasis and microvessel density in severe 
combined immunodeficiency (SCID) mice injected with 
RhoC knockdown cell lines. These findings suggest that 
impeding RhoC function in OSCC can diminish a tumor’s 
aggressive behavior, thus opening new doors for future 
drug therapies targeting this pathway.61

Atorvastatin belongs to the statin family of drugs that 
inhibits cholesterol biosynthesis by blocking the activity 
of HMG-CoA reductase and averting the conversion of 
HMG-CoA to mevalonate. Consequently, this pathway 
also prevents the activity of geranylgeranyl pyrophos-
phate which is responsible for prenylation or lipidation 
of Rho proteins, including RhoC, and is an essential step 
that is needed for their functional biological activity.62 
Therefore, statins are considered good candidates for not 
only inhibiting cholesterol biosynthesis, but also prevent-
ing the prenylation of Rho proteins, including RhoC.

The findings presented by Islam et al demonstrate 
that atorvastatin plays an important role in modulat-
ing RhoC function in vitro by decreasing cell motility, 
invasiveness, stress fiber integrity, proliferation and 
anchorage dependent colony formation, and also by 
depleting the phosphorylation of ERK1/2 and STAT3.61 
Furthermore, in vivo studies show a marked reduction in 
neovascularization and distant lung metastasis in SCID 
mice. Therefore, elucidating the molecular mechanisms 
by which statins regulate RhoC activation will be an 
important step toward a more effective treatment of 
OSCC.

Peroxisome proliferator-activated receptors: Peroxisome 
proliferator-activated receptors (PPARs) are a family of 
ligand-activated transcription factor that belong to the 
nuclear receptor superfamily. This family has a structure 
and function that is comparable to other steroid type 
receptors, with an N-terminal ligand-independent activa-
tion domain, a central DNA binding domain, and a large 
carboxy-terminal ligand binding domain that comprises 
of an activation domain responsible for ligand-dependent 
activation.63

With regard to anti-inflammatory effects in mac-
rophages, PPARγ represses gene transcriptional respons-
es that are mediated by other classes of signal-dependent 
transcription factors via a process called transrepression.64 
Activation of PPARγ has been found to be linked with 
anti-proliferative, proapoptotic, prodifferentiation, anti-
inflammatory and anti-metastatic properties in various 
cancer cell lines and rodent carcinogenesis model 
systems.65 Bren-Mattison et al studied the mechanism 
responsible for suppression of carcinogenesis by activa-
tion of PPARγ, and found that increased PPARγ resulted 
in a proportional decrease in COX-2 expression and 
protection from urethane-induced tumor formation.66

Yoshida et al using the carcinogen 4-nitroquinoline-
1oxide (4-NQO) to induce tongue tumors, demonstrated 
that increasing dose of troglitazone cuts the incidence of 
tumor as compared to controls and severe dysplasia.67 
A retrospective analysis of a database from 10 veteran 
affairs medical centers was performed by Govind rajan 
et al to examine the effect of thiazolidinediones (TZDs) 
on cancer risk in diabetic patients.68 The risk of OSCC 
decreased by 14 to 55% with the use of TZDs, either 
alone or with other antidiabetic agents. More recently, 
a population based cohort study from France examined 
the association between pioglitazone and cancer risk in 
1,491,060 diabetic patients. The risk of head and neck 
cancer was declined by 15%.69

Cancer-associated Inflammation and 
Pharmacokinetics of Anticancer Drugs

It is important to keep in mind that cancer-associated 
inflammation can also influence the pharmacokinetics 
of anticancer drugs. Much of the interpatient variability 
in the clearance of chemotherapy is due to altered levels 
of drug metabolizing enzymes, namely cytochrome 
P450 (CYP) 3A4.70 Patients with progressed cancer have 
significantly reduced hepatic CYP3A4 activity, associated 
with increased plasma concentrations of inflammatory 
mediators.71 The relationship between inflammation and 
CYP activity has been comprehensively studied in various 
animal models of acute inflammation and cancer.72 The 
inflammatory response directs to diminished CYP levels, 
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decreased microsomal metabolism, and CYP-mediated 
drug clearance.73-75 Future therapies aimed at reducing 
the tumor-related inflammatory response, e.g. inhibitors 
of IL6, TNF-α, NF-β, and COX-2 could improve cytotoxic 
chemotherapy in patients with advanced cancer.

Future Directions

Although the role of inflammation in tumorigenesis is 
now widely accredited and it is evident that inflammatory 
responses play a critical role at different stages of tumor 
development, yet the molecular mechanisms about how 
inflammation is involved in tumorigenesis are far from 
being completely understood. The distinctions between 
tumor-promoting inflammation and tumor-suppressive 
immunity are still ambiguous. With this view in mind, 
Balkwill et al proposed the following aspects that will 
help us to develop an effective cancer therapy and some-
day even prevention: (1) recognition of tumor-promoting 
inflammation and tumor-suppressive immunity in tumor 
development, including stages of tumor initiation, pro-
motion, malignant conversion, invasion and metastasis; 
(2) identify which cell type performs tumor promoting 
inflammation and which cell type performs tumor supp-
ressive immunity in tumor development; (3) isolation of 
signal transduction pathways which mediate the cell-
type specific tumor-promoting inflammation or tumor 
suppressive immunity; (4) put together the dynamic 
functional interaction map entailed in innate immune 
cells, adaptive immune cells, stromal and cancer cells.13

Since, monotherapy is generally insufficient for cancer 
treatment, combined use of drug targets discussed in the 
present article and conventional cancer therapy is an 
interesting area of research for the future.

Some cytokines and inflammatory mediators influ-
ence the pharmacodynamics of anticancer drugs, at least 
in vitro. Further research in these areas may lead to more 
rational treatments for patients in whom a significant 
inflammatory response is detectable.

SUMMARY

Chemoprevention of OSCC, a disease associated with a 
high mortality rate and frequent occurrence of a second 
primary tumor, is a clinical goal of paramount impor-
tance. The role of inflammation has been validated in 
processes, like initiation, progression, and prognosis 
of OSCC. Moreover, cancer-associated inflammation 
can also influence the pharmacokinetics of anticancer 
drugs. Inflammation-mediated oral carcinogenesis and 
associated signaling pathways have opened all new 
avenues and opportunities for targeted therapies in 
OSCC. These therapies act directly or indirectly on the 
signaling pathways and hold promising prospects for 

oral cancer chemoprevention and treatment. The recent 
combinations of agents, dosage and/or frequency modi-
fications, or the use of completely new anti-inflammatory 
compounds, may represent the next generation of care 
for cancers. Further research into the area is necessitated. 
Many downstream molecules are linked with inflamma-
tion-mediated carcinogenesis pathways in OSCC, e.g. 
PI3k/Akt/mTOR axis. Independently, these pathways 
have numerous therapeutic opportunities. However, it 
is beyond the scope of the present article to discuss them.
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