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Ab s t r Ac t
Aim: The internal fit and resistance to fracture of resin ceramics are to be evaluated compared to that of lithium disilicate as the control group.
Materials and methods: Four groups of 20 crowns each (GC Cerasmart, Vita Enamic, Coltène Brilliant Crios, and e.max CAD) were cemented on 
identical metal dies. Marginal gaps were measured before cementation and load to fracture was applied after cementation, half of each group 
was thermodynamically aged (3,000 cycles of 5° to 55° immersion followed by 200,000 cycles of 100 N load), finally the crowns were loaded 
until fracture in a universal testing machine. Statistical package for social sciences (SPSS) package 23 was used for statistical work.
Results: Marginal gaps ranged between 68.5 ± 23.8 µm and 87 ± 29.1 µm while occlusal gaps ranged from 220.7 ± 33.3 µm to 275.5 ± 46.5 µm 
and were not significantly different between groups. Fracture loads ranged from 633.8 ± 127.3 N to 1596.4 ± 497.7 N with lithium disilicate 
glass ceramics (LDGCs) and Enamic having higher values than resin nano-ceramics (RNCs). The fracture resistance was more related to material 
than aging and gap value.
Conclusion: The margin adaptation of resin ceramics was comparable to lithium disilicate with no significant difference. Lithium disilicate showed 
a higher resistance than resin ceramics and there was a higher resistance to fracture for polymer-infiltrated ceramic-network (PICN) than RNCs.
Clinical significance: Resin ceramics can have marginal adaptation and fracture resistance within clinical acceptance; therefore, they can be a 
good chair-side solution achieved in a single appointment session.
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In t r o d u c t I o n
Computer-aided design–computer-aided manufacturing (CAD–CAM) 
materials have offered numerous advantages in the field of dentistry 
compared with conventional crown fabrication in terms of time, 
precision,1 and laboratory skill dependency.2 CAD–CAM glass ceramic 
blocks, or lithium disilicate glass ceramics (LDGC, IPS e.max, IVOCLAR 
VIVADENT), were first introduced in an attempt to standardize 
workflow quality (material and shade) and have demonstrated high 
survival rates and aesthetic success over time.3 However, their milling 
is both time and bur consuming4 and can generate cracks and edge 
chipping.5 The more recently introduced resin-based CAD–CAM 
blocks/disks have been designed as alternatives to CAD–CAM glass 
ceramics, they are easier to mill, provide a smoother final surface, 
and require fewer manufacturing steps.4,5

There are two manufacturing techniques for resin ceramic blocks. 
Resin nano-ceramics (RNCs) comprise highly charged dispersed nano-
ceramic particles in a polymer network. Polymer-infiltrated ceramic-
network (PICN) materials involve infiltrating a pre-existing ceramic 
network with resin polymers. The diversity in resin ceramic ingredients 
and network design provides these materials with comparatively 
high flexural strength6 that results in reduced chipping and fractures 
when compared to glass ceramics. The resilient resinous matrix acts 
as a shock absorber while the highly dense ceramic charge gives the 
material its strength and possible hydrofluoric acid surface treatment.7

A proper marginal fit is crucial to ensure minimal cement film 
thickness, poor adaptation being closely associated with gum 
inflammation, secondary caries, and prostheses failure.1 Since the 
hardness of a CAD/CAM material affects the amount of material 
removed during milling,6 similar materials in structure design 
may respond differently during the same workflow and result in 
different gap values. Additionally, different materials have varying 
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structural designs and physical properties and, therefore, do 
not respond equally to occlusal forces, thermal changes, and  
fatigue.

The aims of this study are to evaluate (1) the internal fit and 
fracture resistance of three CAD–CAM resin ceramic materials 
compared to CAD–CAM lithium disilicate, (2) to evaluate the effect 
of aging, and (3) to assess the relationship between internal fit and 
fracture resistance. The null hypotheses tested were that (1) there 
is no difference in the internal fit and fracture resistance with or 
without aging between the materials tested and (2) there is no 
significant relationship between internal fit and fracture resistance.
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MAt e r I A l s A n d Me t h o d s

Preparation of Die Specimens
A typodont (Nissin, Japan) upper first premolar was prepared to 
receive a full-coverage crown. A standardized shoulder of 1 mm 
depth with rounded interior angle was formed using a surveyor 
(IRIS, Tianjin, China). The reduction of the labial, lingual, and occlusal 
surfaces was at ≥ 1.5 mm (the occlusal edges were finished without 
the surveyor), the preparation had a 6° taper (F850.0108, 25 µ grit 
EDENTA Dental, Switzerland), and the occlusal angle between the 
two cusp slopes was 150° (Fig. 1).

The prepared tooth was removed from the practice model and 
two wax rings were added to its apical part to form the master die 
(Fig. 2). The die was then embedded in a duplicating silicon mold 
(RTV 3040A, Bluesil, Germany) and injected with castable wax 
(Castaldo, 120 Constitution Boulevard, Franklin, MA 02038, USA) 
to make 80 replicas that were cast in nickel–chromium (Ni–Cr) 
alloy (EX-3 Noritake Super Alloy, Kuraray Noritake Dental Inc, 
Miyoshi, Aichi, Japan). This resulted in 80 Ni–Cr dies identical to 
the original preparation. All metal dies were examined (air bubbles 
and distortions) using a magnifying stereoscope (×20) (Olympus, 
Japan), to ensure that they were free from defects.

Each of the prepared dies was embedded in self-cured resin 
(Novacryl, Tricodent LTD, Victoria Road, Burgess Hill, England) 
inside a brass cylinder. The dies were immersed until 3 mm below 
the margin and a custom-made positioning holder was used for 
stabilization during polymerization to ensure that all dies were 
identically positioned in their respective resin blocks (Figs 2 to 5).

Preparation and Manufacturing of Crown Specimens
The 80 specimens were divided into four groups (n = 20) according to 
the material used for the respective crowns (Table 1). Each group was 
further divided into two subgroups: following cementation, half of 
the samples were subjected to thermocycling and then cyclic loading.

Each die was digitally scanned using an intraoral scanner 
(OMNICAM, Cerec, Sirona). Data were exported for crown design 
using the in-Lab software (inLab SW4.2, Cerec, Sirona) and then sent 
to the milling device (inLab MCXL, Cerec, Sirona). To standardize 
manufacturing and avoid the need for fitting adjustments, the 
virtual spacing was set at 80 µ on the occlusal surface and all walls 
until 1 mm above the margin and the outer design copied the shape 
of a similar unprepared tooth. This ensured that the 80 crowns of 
four materials obtained were identical in volume and thickness. For 
verification, the crowns were radiographed with the respective dies 
and the thickness was measured using the X-ray software (easydent 
4, Vatech, Korea).

Fig. 1: The preparation with the conventional silicon guide

Fig. 2: The master die with the additional wax rings for better stability 
in the acrylic holder

Fig. 3: Cast die and brass cylinder

Fig. 4: Metal die(s) and positioner
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According to the manufacturer’s recommendations, the crowns 
of groups 1, 2, and 3 were polished mechanically (Vita Enamic 
polishing set, VITA ZAhnfabrik, Bad Säckingen, Germany), while 
those of group 4 (LDGC) were crystalized and glazed in a furnace 
(Programat P310, Ivoclar, vivadent, Schaan, Liechtenstein).

Marginal and Occlusal Gap Assessment
The replica technique was used to evaluate the adaptation 
of the crowns.8–11 Each crown was filled with A-silicone light-
body impression material (express 2 light body flow, 3M ESPE, 
Seefeld, Germany) and placed on the corresponding die with 
a defined load of 20 N for a total period of 4 minutes using a 
surveyor and constant weight. Following impression material 
setting, the crowns were removed from the dies and the intaglios 
inspected for the adherence of the impression material film. 
Unsuccessful impressions were repeated to ensure adherence. 
Subsequently, a medium-bodied material with a contrasting 
color (express 2 regular body quick, 3M ESPE) was injected in 
the crown to form one piece with the film. After setting the 
supporting regular-bodied material, each silicone replica was 
removed from the crown. A sharp blade was used to segment 
each replica buccolingually and mesiodistally into four pieces. A 
blade positioner consisting of an adjusted copper band lined with 
pattern resin was used to standardize segmentation. The copper 
band had two cutting indices: one for the buccolingual cut and 
another for the mesiodistal cut.

Adaptation was assessed using five measurements: four cervical 
points (crown margin to preparation margin) and one occlusal point 
measured vertically at the central fossa. The thickness of the light body 
film at the selected points represented the respective marginal gaps in 
mid-buccal, mid-palatal, mid-mesial, and mid-distal and the internal 
gap was measured at the occlusal middle of the central groove.

All measurements were recorded using a digital optical 
microscope and the corresponding measuring software (portable 
capture pro, V2.1, Gamemax, China).

Crown Cementation, Aging, and Loading
As per the manufacturer’s recommendations, only the crowns in 
groups 1, 2, and 3 were sandblasted using 50 μm alumina powder 
at 1 bar pressure. All crowns (groups 1–4) were then cleaned in 
an ultrasonic bath containing distilled water for 4 minutes. After 
drying, the crowns were pretreated with a ceramic etching gel (IPS 
ceramic primer, Ivoclar-Vivadent) for 20 seconds, rinsed off, and 
air-dried. All crowns and metal dies received a universal primer  
(GC Multiprimer, GC, Japan).

The cementation procedure used a dual cure resin cement  
(GC Linkforce, GC, Japan) and was carried out under a constant pressure 
of 40 N (a surveyor with a custom-made resin tip and a constant weight 
was used on top). The polymerization was completed using a LED-
curing device (Elipar S10, 3M ESPE) for 20 seconds on each surface.

After cementation, half the samples within each group (n = 10) 
were subjected to thermocycling. The protocol involved 3,000 
cycles of three consecutive rounds each: (1) 30 seconds at 5 °C; 
(2) 15 seconds at ambient air temperature; and (3) 30 seconds at 
55 °C. The same specimens were then placed on a cyclic loading 
machine (CS-4 chewing simulator, Mechatronik, Feldkirchen-
Westerham, Germany). The tip was applied on the occlusal groove 
with a load of 100 N at a speed of 30 mm/minute and a frequency of 
1 Hz. No lateral sliding was programmed. A total of 200,000 cycles 
of load were applied to each specimen.

At the end of the fatigue procedure, the specimens were 
checked for possible failure or crack9,12 using a stereoscope X20 
(Olympus, Japan) with direct examination and transillumination. 
Failed specimens were rejected.

Assessment of Fracture Load
All specimens within the four groups were subjected to a load-to-
fracture test using a universal testing machine (Unitronic S 205, Matest, 
Italy) that delivered a compressive load to the specimens at a crosshead 
speed of 1 mm/minute until failure.13–15 The 3 mm diameter spherical 
tip was located on the mesial occlusal fossa and positioned vertical to 
the base. Load–time curves were recorded using the testing machine’s 
software and the load was measured in Newton. The failure load of 
the specimen was recorded when the force vs time graph showed an 
abrupt change in load, indicating a sudden decrease in the specimen’s 
resistance to compressive loading. In correspondence to this sudden 
drop, load delivery underwent an automatic stop.

Statistical Analysis
One-way analysis of variance (ANOVA) tests were used to compare 
the gaps between the four marginal points. One-way ANOVA tests 

Fig. 5: The dies and respective crowns were radiographed for thickness 
verification

Table 1: Materials used
Group Blocks used Manufacturer Composition Lot number
1 Cerasmart GC, Japan Resin nanoceramic Composite resin material (bis-urethane 

dimethacrylate (Bis-UDMA), dimethylaniline 
(DMA)) 71 wt% silica and barium glass

1504271

2 Enamic VITA, Germany PICN Feldspar ceramic 86 wt% 37380
Methacrylate polymer 14 wt%

3 Brilliant Crios COLTENE, Switzerland Resin nanoceramic Crosslinked methacrylates 29.3 wt% G99755
Amorphous silica 70.7 wt%

4 e.max Ivoclarvivadent Liechtenstein LDGC 70 vol% lithium disilicate and glass ceramic U50480
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followed by post hoc tests were employed to compare the margin 
and occlusal gaps between groups. Univariate analyses of variance 
were used to study the effect of material and aging on the the 
fracture load value. Pearson correlations were performed to assess 
the relationship between gap magnitude and resistance to fracture.

The IBM® SPSS® statistics 23.0 statistical package was used to 
carry out all statistical analyses. Statistical significance was set at 0.05.

re s u lts

Gap Measurements
The mean marginal gaps ranged between 68.5 ± 23.8 µm and 
87 ± 29.1 µm.  Within each of the four groups, a one-way ANOVA 
test showed that there were no statistically significant differences 
between the four assessed marginal locations (0.13 < α < 0.91; Table 2).

The marginal gaps were the highest in group 1, followed by 
group 4 and then finally by groups 2 and 3; there was a statistically 
significant difference only between groups 1 and 3 (α = 0.048; Table 3).

Occlusal gaps ranged from 220.7 ± 33.3 µm to 275.5 ± 46.5 µm; 
the largest gap being associated with group 1, followed by group 2, 
then group 3, and finally group 4 (Table 3). The only significant 
difference was between groups 1 and 4 (α = 0.01).

Fracture Load
Two specimens were rejected due to fracture following cyclic 
loading (one from group 1 and another from group 2).

Fracture loads ranged from 633.8 ± 127.3 N to 1596.4 ± 497.7 N. 
The highest values were recorded for group 4, followed by group 
2, then group 3, and finally by group 1 (Graph 1). The pairwise 
comparison of the fracture resistance between groups showed 
that the fracture load recorded for group 4 was significantly higher 
than those for group 1 (α < 0.001), group 2 (α = 0.017), and group 3 
(α < 0.001). Fracture resistance was significantly higher for group 2 
compared to that for group 1 (α = 0.01), whereas group 3 displayed 
similar results to groups 1 and 2 (α > 0.05; Table 4).

Correlations and Associated Factors
Univariate analysis of the effects of material and aging showed that 
material had a significant effect on the fracture load (α = 0.001), 
while aging had no significant effect (α = 0.41) and the combined 
effect of material and aging was not statistically significant (α = 0.29;  
Table 5).

Pearson correlations between the gap magnitude and fracture 
load ranged from weak for the occlusal gaps (Pearson R = − 0.3; 
p = 0.007) to nonexistent in the marginal mid-buccal gaps (Pearson 
R = − 0.004; p = 0.972; Table 6).

dI s c u s s I o n
This study involves the fabrication of identical crowns on identical 
metal dies, this was to investigate one variance between groups 

Table 2: Mean and comparison of gaps
Region Within groups
Occlusal (n = 20) Buccal (n  = 20) Palatal (n = 20) Mesial (n = 20) Distal (n = 20) Margin comparison ANOVA

Groups Mean Mean Mean Mean Mean F p value
Cerasmart 275.50 ± 46.5 82.9 ± 31.1 79.4 ± 33.1    87 ± 29.1    80 ± 32.3 0.23 0.87
Enamic 251.45 ± 46.1 74.8 ± 24.3 68.5 ± 23.8 76.5 ± 28.2 77.3 ± 27.7 0.48 0.7
Brilliant 242.10 ± 42.0 73.1 ± 23.3 68.8 ± 20.7 70.8 ± 2 70.7 ± 16.8 0.18 0.91
E.MAX 220.65 ± 33.3     84 ± 18.2 82.7 ± 21.1 75.4 ± 18.4 74.4 ± 15.7 1.99 0.13

Table 3: Multiple comparison of gaps between groups

Material

Marginal gap Occlusal gap
Mean  
difference p value

Mean  
difference p value

Cerasmart Enamic    8.06 0.359 24.05 0.457
Brilliant  11.49* 0.048* 33.40 0.088
E.max    3.23 1.00 54.85* 0.001*

Enamic Brilliant    3.43 1.00   9.35 1.00
E.max −4.84 1.00 30.80 0.144

Brilliant E.max −8.26 0.323 21.45 0.678
* indicates where the difference was significant

Table 4: Pairwise comparisons of fracture loads between groups
Material Material Mean difference p value
Cerasmart Enamic −449.76 0.01*

Brilliant −248.33 0.156
E.max −787.58 0.000*

Enamic Brilliant    201.42 0.416
E.max −337.83 0.017*

Brilliant E.max −539.25 0.000*
* indicates where the difference was significant

Table 5: Tests of between-subjects effects on fracture load
Source F Sig.
Aging 0.68 0.41
Material 18.67 0.001*
Aging × material 1.28 0.29

* indicates where the difference was significant

Graph 1: Fracture load of groups with and without aging
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a conclusion that is supported by the results of the present study 
even though the differences recorded did not reach statistical 
significance in all four assessed groups.

The larger fracture resistance recorded for e.Max is likely due to 
the interpenetrating needle-type lithium disilicate that responds 
better to load than the dispersed spherical charge in RNC or the 
fused particles of PICN; this result is in agreement with previously 
published results,6,18,26–30 and the literature highlights that lithium 
disilicate has clearly higher fracture strength than other ceramic 
groups.6,18,26,28–30 PICN with fused particles proved having higher 
strength than RNC with dispersed fillers. According to Stawarczyk, 
the fact that PICN has higher resistance than RNC but lower than 
LDGC comes with the same order in hardness and wear properties 
to the antagonist teeth.31 The higher charge percentage with an 
interpenetrating network puts PICN in the midrange between LDGC 
and RNC with dispersed fillers, this was also confirmed by Albero.32

The results in the present study of 3,000 cycles thermocycling 
equivalent to 2.5 years of clinical use33 did not significantly affect 
fracture resistance of any of the groups, this comes in contrast to 
the works of Sonmez et al.29 and Aboushelib et al.34 who found 
that PICN and RNC are more sensitive to thermocycling than LDGC. 
Supporting previous reports, gap magnitude showed no significant 
correlations with fracture load,6,20 thereby suggesting that the 
resistance to fracture is mainly related to the material factor.

Various other factors may interfere with the results, such as 
the setting of the design software35 for the virtual die spacer and 
the gap evaluation technique used. A recent study25 showed that 
optical coherence tomography (OCT) can give lower values than 
the replica technique for the same prosthetic work. The replica 
technique may be sensitive to the taper angle, the height of the 
preparation, the viscosity of the light body used, and the pressure 
applied. A comparison with OCT and microtomography (micro-CT) 
might be useful in further studies.

co n c lu s I o n
Within the limits of this study, the following conclusions can be drawn:

• PICN and RNC materials appear to equally withstand the occlusal 
forces in normal posterior occlusion.

• PICN and RNC may be used for single unit restorations with 
promising prognosis.

• Thermodynamic aging does not seem to weaken PICN and RNC 
materials.
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