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Ab s t r ac t​
Aim: The purpose of this study was to compare the stress distribution around various thread design implants with or without platform switching 
in the maxillary posterior region.
Materials and methods: Stress-based performances of four different thread design implants (single, double, triple, and asymmetric thread 
design each with or without platform switching) were analyzed by the three-dimensional finite element method under a static load of 100 N at 
15° oblique direction buccolingually at the central portion of the abutment. A geometric model of the posterior maxillary segment (first molar 
region) with an implant and abutment was modeled using the CATIA V5R19 software. Type IV bone quality was approximated and complete 
osseous integration was assumed.
Results: The von Mises stresses recorded around the neck of the fourthread design implants without platform switching were greater than the 
platform switching variety. The single-threaded implant with platform switching showed the lowest amount of von Mises stress. Additionally, 
total displacement or micromovement of single, triple, and asymmetric thread implants with platform switching was found to be greater than 
the without platform switching variety. Further, the total displacement of the single-threaded implant without platform switching was lowest.
Conclusion: Implant surface design, platform switching, and site of placement affect load transmission mechanisms. Due to low crestal resorption, 
single thread design with platform switching is preferred. The success of an implant in the maxillary molar region is more challenging in terms 
of the density of bone and the worst load transfer mechanism. With the right kind of implant surface design selection, this can be reduced to 
a great extent by the preservation of crest of the ridge.
Clinical significance: Crestal bone resorption following implant placement is an important issue. An optimum implant design with a single 
thread having a platform switch could compensate for this issue to a great extent.
Keywords: Finite element analysis, Platform switching, Threaded implant.
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In t r o d u c t i o n​
The continuous research in the field of dental implants has 
made them survivable and predictable.1–4 It can be attributed to 
modifications in implant design, materials, and surgical techniques.5 
The incidence of dental implant failures is still a concern, particularly 
in the maxillary posterior region.1,6–15 Osseointegration failure in this 
region can be ascribed to poor oral health along with biomechanical 
factors like dental implant and quality of surrounding bone.1,16–23 
Implant design favoring optimum dissipation force at the implant–
bone junction is essential to make them predictable in the maxillary 
posterior region.

The thread of the implant is an important biomechanical 
factor that maximizes initial contact, improve initial stability, 
enlarge implant surface area, and favor dissipation of interfacial 
stress.24,25 Based on thread helix, single-thread, double-thread, 
triple-thread, and asymmetric thread type implants are available 
commercially.26,27 The double- and triple-threaded implants are 
presumed to thread faster into the osteotomy site and are primarily 
indicated in type IV cancellous bone.26,27 Asymmetric implants 
with micro threads in the coronal portion of the implant have been 
claimed to reduce marginal bone loss, maintain peri-implant soft 
tissues and increase the bone implant contact (BIC).25,28–30  However 
some studies defy this.31

Crestal bone loss due to high stress and strain in cortical bone, 
are further reduced when a narrow-diameter abutment with a 
wider-shift implant collar is used—a concept called platform 

switching.32–34 This relocates the implant–abutment junction 
toward the central axis.35 So stress distribution shifts from compact 
to the spongy bone under oblique load.36 The hemogeneous 
distribution of force along the length of the implant decreases the 
mean crestal bone loss to around 0.22 mm.37,38

Apart from implant design, bone quality has a vital role to play 
in the success of implant therapy.39 The literature suggests that 
only 3% of Brånemark System implants (Nobel Biocare, Göteborg, 
Sweden) placed in type I, II, and III bone were lost after 5 years, while 
in type IV bone, failure rates were 35% over the same period.40 This 
can be attributed to the small implant-to-bone contact area and 
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the inferior bone quality.41 The posterior region of the maxilla is 
mostly made up of type IV bone.32,42,43 So implant design favoring 
optimum dissipation of force along the implant–abutment interface 
is required in this region for clinical success.44–47

The stress analysis of implant–bone mechanical interactions, 
around various thread design (single, double, triple, and asymmetric 
threaded) implants with or without platform switching, in the 
maxillary posterior region, can suggest the ideal implant design.48,49 
This is better done with the finite element analysis (FEA), owing 
to the complex geometry of the bone-implant biomechanical 
system.50,51 The FEA is a numerical tool that analyzes very complex 
and irregular structures. It breaks the complex structures into many 
small simple interrelated blocks or elements using a mathematical 
technique. Hence, the stress and deflection of all parts of the 
structure are calculated precisely.52,53

The purpose of this three-dimensional (3-D) FEA study 
was to assess and compare the effect of various thread design 
(single, double, triple, and asymmetric threaded) implants with or 
without platform switching on stress on cortical bone and overall 
displacement of the implant–abutment complex in the maxillary 
posterior region. This will help in the selection of a proper design 
implant for the maxillary posterior region.

Mat e r ia  l s a n d​ Me t h o d s​
This observational descriptive research using a 3-D FEA was 
conducted in the Department of Prosthodontics, Institute of Dental 
Sciences and ITER, SOAU, Bhubaneswar, Odisha. For this study, 
eight 3-D geometric models were generated using the CATIA V5R19 
software. A computer with a 19 inch widescreen monitor, 8 GB 
RAM, Intel 5 (i5) processor along with memory capacity of 1 TB hard 
disk was used for the purpose. Each model comprised an implant, 
abutment, and bone block. For standardization, parameters of all 
the models were kept identical except for the implant thread design. 
Data for the models were adapted from the literature.

Four different thread design single-piece implants (single, 
double, triple, and asymmetric thread), each with and without 
platform switching (n = 8), were used for the purpose (Figs 1 to 4). 
Single-piece implants were preferred for their simple design and 
better dissipation of force along with the fixture.54 Short- and wide-
diameter implants, each having 7 mm length and 5 mm diameter, 
were used.55 The thread dimensions of implants used for the models 
are given in the tabular form (Table 1).56–59 All the abutments were 
having a height of 4 mm and 3-degree taper all around from the 

vertical axis.56–59 Data for implant models were taken from the 
Nobel Biocare catalog.

A segment of D4 quality bone, resembling the missing maxillary 
first molar region, was considered for models. For simplification, 
bone geometry was simulated as two coaxial cylinders. The inner 
core was cancellous D4 bone, with a diameter of 14 mm and a 
height of 22 mm.39 It was surrounded by an outer cylinder of 0.5 
mm thickness representing the cortical bone, with a diameter of 
15 mm and a height of 23 mm. Data for all the models were based 
on the previous literature.60,61

Once 3-D geometric models were created with CATIA V5R19 
software (solidwork; Avions Marcel Dassault, France), they were 
exported to FEA software ANSYS (ANSYS 13.0, ANSYS Inc., Houston, 
TX, USA). Here, these models were meshed with Hypermesh v11.0 
(ANSYS version 13 software), using 10-node tetrahedral elements, 
to generate the 3-D FEA models. Each node was assigned 4° 
of freedom. Care was taken to ensure that meshes on adjacent 
patches are compatible so that no node was isolated. The modulus 
of elasticity and Poisson’s ratio of each material were specified 
concerning their location in the finite element models. Elastic 
properties of various materials were adopted from the literature 
and the materials of all models were presumed to be isotropic, 
homogeneous, and linearly elastic (Table 2).62

In this study, the interface between the implant and bone in 
FEA models was assumed to be an immovable junction, indicating 
100% osseointegration between the implant and the bone.54 
This is also supported by Papavasiliou et al. who observed that 
different degrees of osseointegration do not affect the stress level 
or distribution of axial or oblique load.63 An oblique load of 100 N 
was applied in the buccopalatal direction, at the mid-center of the 
abutment of the one-piece implant system. It was at an angle of 15 
degrees to the vertical.55 For loading, an oblique force was chosen, 
as it is more realistic during chewing and will result in localized 
stress in cortical bone.32

For 3-D FEA, descriptive statistics were computed to compare 
the results of von Mises stress distribution and total displacement 
between different thread design implants (single, double, 
triple, and asymmetric thread), each with and without platform  
switching.

Re s u lts​
Stress generated in the cortical bone (von Mises equivalent 
stress—MPa), around the various thread design implants each with 

Figs 1A and B: (A) Mesh form of single-thread implant design without 
platform switching; (B) Mesh form of single-thread implant design with 
platform switching

Figs 2A and B: (A) Mesh form of double-thread implant design without 
platform switching; (B) Mesh form of double-thread implant design 
with platform switching
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or without platform switching, and the total displacement (micro-
movement) were computed using the ANSYS version 13 software 
program. Stress distribution in the FE model is normally expressed 
in numerical values corresponding to the particular color coding. 
Algebraic maximum and minimum values of von Mises stresses 
are denoted by red and blue colors, respectively. The intermediate 
values are represented in the form of bluish-green, green, greenish-
yellow, and yellowish red in the increasing order.

Stress distribution around the platform-switched, single-
threaded implant is expressed in the form of colored patterns 
as shown in the figure (Fig. 5). Similar stress patterns were also 
found for the double-thread, triple-thread, and asymmetric thread 
implants with and without platform switching. The stress values 
obtained for all the implant designs were tabulated and compared 
in the following manner (Tables 3 and 4).

von Mises Stress (MPa) in the Cortical Bone around 
Various Thread Design Implants with or without 
Platform Switching
Out of four different thread designs, maximum von Mises stress 
was produced by the double-threaded implant (19.9–21.6 MPa), 

whereas single-threaded implant produced minimum von Mises 
stress (15.4–16.2 MPa) in the cortical plate. Again, implants with 
platform switching exert less stress (15.4–19.9 MPa) in the cortical 
bone around the implant than without platform switching.

Total Displacement (Micromovement) of Various 
Thread Design Implants with and without Platform 
Switching in the Bone
In comparison to the double, triple, and asymmetric thread 
variety implants, minimum overall displacement was seen in a 
single-threaded implant with and without platform switching 
(0.011664–0.008524 mm). On the contrary, implants with platform 
switching showed more overall displacement (0.011664–0.013129 
mm) in the surrounding bone.31 After analyzing the results, it can be 
presumed that out of all different implant designs, a single-threaded 
implant favors better stress distribution and minimum stress to the 
cortical bone around the implant. It also has a minimum overall 
displacement among all different designs.

Di s c u s s i o n​
In the present study, the 3-D FEA method is used to assess the effect 
of various thread design (single, double, triple, and asymmetric 
threaded) implants with or without platform switching on cortical 
bone stress and overall displacement of the implant–abutment 
complex in the maxillary posterior region.

Crestal bone loss is an important factor determining the long-
term prognosis of the implant. This can be prevented when vertical 
bone loss around an implant is not exceeded by 2 mm for the first 
year and remain less than 0.2 mm annually. This will preserve the 
biologic width around the implant.64 The result of the study showed 
that maximum von Mises stress in the cortical plate was produced 

Figs 4A and B: (A) Mesh form of asymmetric thread implant design 
without platform switching; (B) Mesh form of asymmetric thread implant 
design with platform switching

Table 1: Thread dimensions of four implant designs

Implant thread design Pitch (mm)
Thread depth with/without 
platform switch (mm)

Thread length 
(mm) Collar height (mm)

Tip diameter of 
implant (mm)

Single 0.8 0.5 6.5 0.5 2.98
Double 1.6 0.5 6.5 0.5 2.98
Triple 2.4 0.5 6.5 0.5 2.98
Asymmetric Coronal 0.4 0.25 0.5 0.5 2.98

Body portion 0.8 0.5 0.5 0.5 2.98

Figs 3A and B: (A) Mesh form of triple-thread implant design without 
platform switching; (B) Mesh form of triple-thread implant design with 
platform switching

Table 2: Material properties62

Material Young’s modulus Poisson’s ratio
Trabecular bone (D4) 1.10 GPa 0.3
Cortical bone 13.7 GPa 0.3
Titanium 110.000 MPa 0.33

Courtesy: Desai SR, Singh R, Karthikeyan I. 2D FEA of evaluation of mi-
cromovements and stresses at bone-implant interface in immediately 
loaded tapered implants in the posterior maxilla. J Indian Soc Periodontol 
2013;17(5):637–643 (Reference no: 62)
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by the double-threaded implant, whereas minimum stress was 
produced by the single-threaded implant variety. This finding is 
in agreement with the study by Sun et al., who stated that the 
best stress transmission is shown by a single-threaded implant in 
comparison to other thread patterns.26

Again, implants with platform switching exerted less stress 
in the cortical bone around the implant in comparison with the 
implant without platform switching. In this regard, it complemented 
the previous study by Ferraz et al., who stated that in contrast to 
the regular platform, the platform switching concept reduces the 
stress and strain for the cortical plate.31 On the contrary, higher 
stress was found in trabecular bone for the platform switch variety.31 
Minimum overall displacement was also seen in a single-threaded 
implant for both platform switching and without platform switching 
varieties. After analyzing the results, it can be concluded that out 
of all threaded implant designs, the single-threaded implant with 
platform switching is the best design. It distributes the stress evenly 
with minimum force transmission to the cortical bone around the 
implant. Again, it has a minimum overall displacement among all 
different designs.

One of the limitations of this study is the use of a single-piece 
implant to overcome the complexity of implant internal design 

modeling in two-piece implants. Again, the geometry of the bone 
model was not only simplified but also assumed to be isotropic and 
homogeneous for the simulated structure. Despite similar strength 
of the bone block to that of the jaw bone, the strain patterns might 
vary with the bone geometry. This could also have created a small 
margin of errors in results.54 Further, the properties of leaving 
tissue in an actual biological system might not be isotropic and 
hemogeneous, which needs to be studied further.55 Although 
oblique loading has been suggested to symbolize a realistic occlusal 
load, chewing movement, specifically with dynamic loading 
simulations, needs to be considered in future investigations.50 
Each individual has a unique biological condition in terms of bone 
quality, force distribution, and masticatory activity. So, the results of 
the study need to be further substantiated by randomized clinical 
trials for clinical application.64

Co n c lu s i o n​
Within the limitations of the 3-D FEA study, it can be concluded 
that implants can be successfully placed in the maxillary posterior 
region. Cortical stress concentration in D4 bone is more for the 
asymmetric implant in comparison to the single-threaded implant, 
whereas stresses are less in comparison to double- and triple-
threaded designs. Again, implants with platform switching exert 
less stress in the cortical bone around the implant than without 
platform switching. A single-threaded implant with platform 
switching showed even distribution of stress and is the suitable 
design out of four different designs of implants for the maxillary 
posterior region.
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