Arthroscopy for the Treatment of Temporomandibular Disorders

Seyed Ali Mosaddad

Keywords: Arthroscopy, Facial pain, Temporomandibular joint, Temporomandibular joint disorders.

The Journal of Contemporary Dental Practice (2024): 10.5005/jp-journals-10024-3646

Temporomandibular disorders (TMD) encompass a range of conditions affecting the temporomandibular joint (TMJ) and surrounding structures, leading to pain, dysfunction, and impaired quality of life for affected individuals.\(^1\)\(^2\) Arthroscopy has emerged as a minimally invasive and effective therapeutic option for the diagnosis and treatment of TMD.

Temporomandibular disorders represent a multifactorial group of conditions affecting the TMJ, encompassing structural and functional abnormalities. Traditional treatment approaches have included conservative measures such as physiotherapy, medications, and occlusal splints. However, for cases, refractory to conservative management, surgical interventions may be considered. Arthroscopy has gained popularity due to its minimally invasive nature, reduced morbidity, and potential for improved patient outcomes.\(^3\)\(^-\)\(^10\)

Arthroscopy is typically indicated for patients with TMD who have not responded to conservative therapies or have specific intra-articular pathology. Common indications include disc displacement with or without reduction, adhesions, synovitis, and osteoarthritis. Proper patient selection is crucial, and a thorough preoperative assessment, including imaging studies, is essential for identifying suitable candidates.\(^11\)\(^-\)\(^17\)

Arthroscopy involves the insertion of a small, flexible arthroscope into the TMJ to visualize the joint’s internal structures. The procedure can be performed under local or general anesthesia, and portals are established for instrument insertion. Arthroscopic techniques include lavage and debridement, lysis of adhesions, disc repositioning, and synovectomy. The choice of technique depends on the specific pathology identified during arthroscopic examination.\(^18\)

Numerous studies have reported favorable outcomes following arthroscopic interventions for TMD. Improved pain relief, increased mouth opening, and enhanced jaw function are commonly observed. However, it is essential to recognize potential complications, such as infection, bleeding, and injury to surrounding structures. Patient education and informed consent are critical aspects of preoperative care.\(^19\)\(^-\)\(^21\)

Advancements in arthroscopic technology, including high-definition imaging and instrumentation, continue to enhance the precision and efficacy of the procedure. Ongoing research is focused on refining patient selection criteria, identifying predictors of success, and exploring the role of emerging therapies such as platelet-rich plasma and stem cell injections. Long-term follow-up studies are needed to assess the durability of arthroscopic outcomes.

Arthroscopy has emerged as a valuable tool in the comprehensive management of TMD, offering a minimally invasive approach with favorable outcomes for select patients.\(^22\)\(^,\)\(^23\) Continued research and technological advancements are expected to further refine the indications and techniques of arthroscopic interventions, providing additional options for individuals with TMD. As the field evolves, collaboration between clinicians and researchers will be essential to optimize patient outcomes and establish arthroscopy as a standard therapeutic modality in the management of TMD.

References

© The Author(s). 2024 Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

