Implant Rehabilitation Partial Maxillary Edentulism with Onlay Autogenous Chin Bone Grafting and Prosthetic Gingival Restoration: A Case Report

Violeta Malpartida-Carrillo1, Pedro L Tinedo-López2, Fernando Ortiz-Culca3, Alejandro Cornejo-García4, Maria E Guerrero5, Silvia P Amaya-Pajares6

ABSTRACT

Background: Atrophic anterior maxilla rehabilitation can be a challenging procedure due to multiple factors that influence clinical decision making. After a prolonged loss of teeth, the residual bone often impedes the use of standard implant placement protocols and additional procedures are needed.

Aim: The aim of this study is to describe the multidisciplinary approach for the diagnosis and treatment of a 50-year-old woman with prolonged use of a removable maxillary partial denture.

Case Description: This article describes a clinical case of a patient with high and width alveolar bone loss. After initial thorough diagnosis, it was decided to proceed with autogenous chin bone grafting. The patient eventually received dental implants and a prosthetic rehabilitation.

Conclusion: The use of autogenous grafts obtained from the chin in combination with xenograft and then covered with an absorbable collagen membrane represents a predictable procedure for the rehabilitation of the long-term partial maxillary edentulism. Prosthetic gingival restoration is an alternative technique to overcome the limitations of hard- and soft-tissue grafting.

Clinical significance: The treatment of a patient with high and width alveolar bone loss needs a multidisciplinary approach. Autogenous grafts obtained from the chin in combination with xenograft and then covered with an absorbable collagen membrane represent an effective procedure. Also, prosthetic gingival restoration can be used as an alternative technique to overcome the limitations of hard- and soft-tissue grafting.

Keywords: Alveolar bone grafting, Alveolar bone loss, Bone regeneration, Dental implants.

BACKGROUND

Tooth loss triggers a cascade of biological events with local anatomic changes resulting in both horizontal and vertical reductions that are more prominent in the first year.1–2 This condition has been shown to have a direct impact on the patient’s quality of life, compromising their ability to masticate, speak, and, in some cases, socialize.3

Dental implants are an alternative treatment for missing teeth replacement and its predictability has been confirmed by more than 30 years of experience with high success rates.4–5 However, unfavorable local conditions of the alveolar ridge occur due to periodontitis, trauma, tumors, resorption following tooth loss,6 oral infections, or long-term edentulism that often compromise the ideal implant placement, and additional procedures are required to improve the bone width and height. Block graft, guided bone regeneration (GBR), distraction osteogenesis, and ridge splitting are procedures used for this purpose ensuring that implants can be placed under optimum conditions.7–8

Autogenous block grafting is a reconstructive technique that requires the harvesting of a bone block from an intraoral or extraoral donor site fixing the graft by screws to a recipient site. According to the literature, autogenous block grafting can be considered as the “gold standard” treatment for reconstruction of large horizontal bone defects because of their osteogenic, osteoinductive, and osteoconductive potentials,9–31 despite the unpredictable resorption, donor site morbidity, and limited availability.12 After block grafts are fixed, we can use xenografts, allografts, or alloplastic graft materials to fill in the gaps between the recipient site and the block grafts and to minimize block graft resorption. Xenograft is one of the most used graft materials, and, frequently, in the form of an anorganic bovine bone (ABB) can minimize block graft resorption because this osteoconductive material can be placed around block grafts.13 Also, ABB acts as a space maintainer and holds the

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
space for a longer term since it resorbs very slowly. Moreover, a membrane is often used to provide structural support to the defect site and to promote the intrinsic regenerative potential of the host tissue. Hence, bioabsorbable membranes, such as collagen ones, have often been used as tissue barriers for bone augmentation to promote primary wound closure and to minimize graft resorption. The evidence suggest that in spite of all considerations described above, the resorption occurs. Therefore, such resorption may influence the positive impact of grafting on the esthetic outcome.

Tissue engineering has emerged as an alternative technique to repair and restore function of damaged or diseased tissues and its aim is to create bioartificial tissues and organs. L-PRF is considered one of the growing topics for applied clinical regenerative medicine frequently used in oral and maxillofacial surgery as a surgical adjuvant to improve healing and promote tissue regeneration.

Knowing that the treatment of an atrophied alveolar ridge in the anterior zone is acutely complicated, Coachman et al. suggested a prosthetic gingival restoration as an alternative to overcome the limitations of hard- and soft-tissue grafting. This option can reestablish natural crown ratios and natural gingival profiles, reducing the necessity of additional gingival surgical procedures.

This clinical report describes the multidisciplinary approach for the diagnosis and treatment of a 50-year-old woman with prolonged use of a removable maxillary partial denture. The treatment started with an onlay autogenous chin bone graft followed by the placement of dental implants and rehabilitated with an implant-supported fixed partial prosthesis with a prosthetic gingival restoration.

Case Description

A 50-year-old woman presented to the dental clinic of the Universidad Científica del Sur, Lima, Peru, in good physical and psychological conditions. Her chief complaint was “I feel uncomfortable with my removable maxillary partial denture.” Preliminary clinical and radiographic evaluations and dental casts showed an anterior partial maxillary atrophy, as well as a partial edentulism in the mandible.

A cone beam-computed tomography (CBCT) showed a horizontal resorption of the alveolar ridge (Fig. 1). The dental diagnosis of the patient included plaque-induced gingivitis, localized moderate chronic periodontitis, partial edentulism, anterior maxillary bone defect class H-m of Wang classification, and rotated and extruded teeth. According to the preliminary diagnostic wax-up and extraoral evaluation, insufficient restorative space was available so it was decided to increase the occlusal vertical dimension. The patient was informed about the treatment options: inlay/onlay monocortical grafts or GBR and they were presented and discussed. After that, autogenous bone harvesting from the chin area before the insertion of the dental implants was accepted. Finally, the patient signed an informed consent.

First Preimplantology Surgical Stage

Autogenous Block Grafting

A preoperative analgesic and anti-inflammatory therapy with ketorolac 30 mg (Corporacion Infamas S.A., Lima, Peru) and dexamethasone 8 mg (Laboratorios Unidos S.A., Lima, Peru) was administered intramuscularly. Additionally, an antibiotic, anti-inflammatory, and analgesic therapy was administered with 2 g dose of amoxicillin with clavulanic acid (Laboratorios Naturales y Genéricos S.A.C., Arequipa, Peru), 1 tablet every 8 hours for 7 days starting on the evening before the surgery, dexamethasone 10 mg (Laboratorios Unidos S.A., Lima, Peru), and ketorolac 10 mg (Corporacion Infamas S.A., Lima, Peru), 2 times a day for 3 days after surgery was given orally. Oral disinfection was performed before the surgery using 0.12% chlorhexidine digluconate mouthwash (Perio-Aid, Dental S.L., Spain) and it was also recommended after the surgery for 10 days, 2 times per day. The surgical procedure was performed under local anesthesia with lidocaine 2% with epinephrine 1:80,000 (New Stetic, Antioquia, Colombia). The horizontal incision begins at the distal of canines positioned 2 mm apically to the mucogingival line and two vertical incisions apically extended provided good access to the mandibular symphysis. This donor site was exposed maintaining 5 mm safety distance from the mental nerves and from the roots of the teeth. A block size was marked using rotational instruments considering a block thickness of 4 mm using a periodontal probe (HuFriedy, Chicago, IL, USA). The block was divided into 2 pieces slightly trimmed for better adaptation and they were mobilized manually using surgical chisels and were immediately immersed into the sterile saline solution to prevent dehydration.

The maxillary recipient site was delimited from canine-to-canine. A full-thickness crestal incision was performed continuing into the attached gingiva of the mesial and distal tooth. The lingual and buccal subperiosteal tissues were carefully dissected to gain adequate visibility of the underlying bone. This recipient site was perforated using a number 2 high-speed round bur under copious saline irrigation to increase the blood supply from endosseous vessels and to improve the physical bond between the grafted bone and the recipient site. Later, two osteosynthesis screws (Systex, Curitiba, Brazil) were used to fix the blocks on the recipient site (Fig. 2). A particulate xenograft (Bio-Oss, Geistlich Pharma AG, Wolhusen, Switzerland) was used to fill the voids around the blocks and the recipient site. A resorbable collagen barrier membrane (Neomem, Citagenix, Sao Paulo, Brazil) was then laid over the entire grafted area to improve the outcome and reduce the surface resorption of the transferred graft. L-PRF was prepared in a table centrifuge at 2,700 rpm for 12 minutes in accordance with the protocol suggested by Dohan et al. and was used inside the full-thickness flap (Fig. 3). The mentalis muscle and the flaps were repositioned using absorbable 4.0 polyglycolic

![Fig. 1: CBCT showing horizontal resorption of the alveolar ridge](image-url)
Onlay Autogenous Chin Bone Grafting and Prosthetic Gingival Restoration

The Journal of Contemporary Dental Practice, Volume 20 Issue 7 (July 2019)

acid sutures (Unilene S.A.C., Lima, Peru). Postsurgical instructions included a soft diet for 2 weeks and the sutures were removed 14 days postoperatively. Finally, the patient’s removable maxillary partial denture was relined with tissue conditioner (Mucopren, Kettenbach, Eschenburg, Germany). The patient had clinical follow-ups every week for the first 3 weeks after surgery and once a month before implant insertion. During this time, the patient’s only complaint was the presence of neurosensory disturbance. Vitamin B (Ultra B, Albis S.A., Lima, Peru) therapy was started one tablet every day for 30 days.

Second Surgical Stage
Placement of Implants
Five months after surgery, horizontal bone gain for implant insertion was seen on CBCT planning (Fig. 4). Implants were placed under local anesthesia by the same surgeon who had performed the previous grafting procedure. Preoperative and postoperative analgesic, anti-inflammatory, and antibiotic therapy was prescribed. A full-thickness crestal incision was made and the soft tissues overlying the reconstructed alveolar process were elevated. Four dental implants (IS II Active, NeoBiotech Co, Ltd, Seoul, South Korea) with internal connections (3.5 × 10 mm) were placed in the #12, #11, #22, and #23 teeth regions with GBR, and L-PRF was used inside the full-thickness flap (Fig. 5). Additionally, other 5 implants (3.5 × 10 mm) were placed on #17, #16, #15, #14, and #24 teeth regions with the same technique. Three mandibular dental implants (3.5 × 10 mm) located on the #36, #35, and #46 teeth regions were also placed. The flaps were sutured with absorbable 4.0 polyglycolic acid sutures. The patient’s removable maxillary partial denture was relined one more time with a tissue conditioner to avoid tissue pressure. A soft diet and appropriate oral hygiene were recommended for 2 weeks. Sutures were removed 10 days after the surgical procedure. The postoperative recovery was uneventful.

Third Surgical Stage
Implants Uncovering and Placement of Healing Abutments
Seven months later, a panoramic radiograph was taken to verify the position of the implant. The maxillary and mandibular dental implants were exposed, cover screws were removed, and healing abutments were placed. A connective tissue graft (CTG) with L-PRF was performed to improve the keratinized mucosa width conditioning the peri-implant soft tissues. Sutures were removed after 10 days.

Prosthetic Rehabilitation
Finally, 4 months after soft-tissue healing and soft-tissue management around maxillary dental implants, the prosthetic stage started with open tray impressions. Cement-retained metal-ceramic splinted restorations were placed for anterior and posterior maxillary areas. The left mandibular area was rehabilitated with two single screw-retained metal-ceramic crowns and the right side with a cement-retained restoration. Prosthetic gingival restoration was used on the anterior region to improve the natural gingival profiles and the esthetic. Additionally, the crowns of the mandibular anterior region were also replaced (Fig. 6).
DISCUSSION

A prosthetically driven implant approach recommends that a very deficient edentulous ridge requires alveolar bone reconstruction with different options such as autogenous blocks harvested from intraoral or extraoral donor sites, GBR, ridge splitting, and distraction osteogenesis. The choice of the treatment approach mainly depends on the size and the extension of the defect, medical status of the patient, clinical history of the tooth loss, and the patient’s expectations and compliance.

The maxilla is prone to resorption in a centripetal direction; therefore, buccal bone deficiency after tooth loss is constant, leading to complex horizontal ridges. In this case report, the mean width of the remaining alveolar ridge was less than 2 mm at the middle and coronal regions. Thus, according to the HVC Wang classification, the dental diagnosis included class H-m and the treatment options for the alveolar bone reconstruction in this case were inlay/onlay monocortical grafts or GBR, in the attempt to place the future implants orofacially in a comfort zone.

GBR as well as the use of natural biological molecules (bone morphogenetic proteins and recombinant human platelet-derived growth factors) could have been an alternative. However, we decided to treat this case with autogenous block graft, ABB, and collagen membrane because this combination has demonstrated to be an alternative treatment well reported in the literature. However, volume changes due to graft remodeling have been considered one of the main drawbacks of autogenous block grafts. Chappuis et al. confirmed a favorable success rate of 98.1% with a minimal block graft resorption of 7.7% in a follow-up period of 10 years when autogenous block graft, ABB, and collagen membrane were used. Gultekin et al. evaluated volumetric changes at GBR and autogenous block graft sites in 24 patients using CBCT and they concluded that GBR caused greater resorption at maxillary augmented sites than autogenous block graft. Intraoral block grafts such as chin or mandibular ramus are the preferred sites to obtain predictable sources because they undergo “reverse creeping substitution,” which takes longer time for the graft to resorb, hence, they can hold space longer for the bone to fill in. Ersanli et al. compared the chin and the ramus efficacy for the restoration of lost horizontal alveolar bone volume in the anterior maxilla in 32 patients, and they had a bone thickness average gain of 4.34 mm and 4.36 mm, respectively. Both donor sites were a successful option. Donor site morbidity is considered another of the autogenous block grafts’ drawbacks, mainly related to temporary or permanent neural disturbances involving the inferior alveolar nerve and its branches. In a subjective and objective cross-sectional evaluation of donor and recipient site up to 4 years, Cordaro et al. reported alterations of sensitivity in 27.5% of the 78 patients who received mandibular chin or ramus block grafts with minor complications regarding the donor site area, and the majority of these disturbances were temporary. In this case report after autogenous block grafting, the unique patient’s complaint was the presence of neurosensory disturbance; for that, a vitamin B therapy was prescribed, and, after 6 months, the complaint completely disappeared.

Treatment of an atrophied alveolar ridge is extremely challenging because both soft and hard tissues are lost. In this case report, L-PRF was used first inside the full-thickness flap at the GBR procedure and after with CTG in an attempt to create a better environment for bone growth and to enhance soft-tissue healing as reported in the literature. Recently, in a systematic review, Levine et al. reported that soft-tissue augmentation procedures for mucogingival defects resulted in some significant recession as healing resolved and the tissue matured. Additionally, the area under treatment was extensive. As a matter of fact, before the prosthetic rehabilitation, it was observed that CTG showed a certain tendency to relapse at the #12 and #11 teeth regions and it was necessary to recreate the contour of the normal mucosa at that region with a prosthetic gingival restoration. Currently, this procedure is an alternative technique in implant prosthetic treatments for correcting gingival symmetry reducing the necessity of technique-sensitive surgical procedures. In the literature are reported two common methods of using prosthetic gingival restoration for the management of soft-tissue deficiencies in anterior implant-supported restorations: a crown modified with gingiva-colored porcelain and a customized abutment modified with gingiva-colored porcelain. The first method is more common to recreate the loss of peri-implant tissue and the second method is used when implants are incorrectly angled or improperly positioned with soft-tissue defects. In this case, was necessary only the applying of gingiva-colored porcelain onto the cervical portion of crowns #12 and #11 and the aesthetic result was satisfactory for the patient.

Salama et al. recommended the inclusion of prosthetic gingival restoration in prosthetic reconstructions as an alternative for aesthetic solutions. The primary issue with this technique is that patients need to understand the importance of adequate oral hygiene habits and their compliance in the maintenance sessions to guarantee the long-term success of their dental
implants. Therefore, from a practical standpoint, prosthetic gingival restoration is a trustworthy and predictable alternative option adjunct to implant therapy.

Conclusion

The use of autogenous grafts obtained from the chin in combination with xenograft and then covered with an absorbable collagen membrane represents an effective and predictable procedure for the rehabilitation of the long-term partial maxillary edentulism. Prosthetic gingival restoration is an alternative technique to overcome the limitations of hard- and soft-tissue grafting, reducing the necessity of additional technique-sensitive surgical procedures.

Clinical Significance

The treatment of a patient with high and width alveolar bone loss needs a multidisciplinary approach. Autogenous grafts obtained from the chin in combination with xenograft and then covered with an absorbable collagen membrane represent an effective procedure. Also, prosthetic gingival restoration can be used as an alternative technique to overcome the limitations of hard- and soft-tissue grafting.

Acknowledgment

The authors thank the patient who participated in the study.

References

