Assessing the Effects of Air Abrasion with Aluminum Oxide or Glass Beads to Zirconia on the Bond Strength of Cement

Kibrom Mehari1, Allan S Parke2, Francisco F Gallardo3, Kraig S Vandewalle4

ABSTRACT

Aim: The purpose of this study was to evaluate the effects of air abrasion with aluminum oxide or glass beads to three types of zirconia containing various levels of cubic crystalline phases (3Y-TZP, Katana ML; 4Y-PSZ, Katana STML; and 5Y-PSZ, Katana UTML, Noritake) on the shear bond strength of resin cement.

Materials and methods: Thirty block specimens (8 x 8 x 3.5 mm) were milled out of each zirconia material and mounted in plastic tube. Ten specimens of each of the zirconia materials were air-abraded using 50 μm aluminum oxide particles, ten specimens were abraded using 80 μm glass beads, and ten specimens served as a control and received no surface treatment. A zirconia primer was applied to the surface of the zirconia specimens. Composite disks were bonded using a resin cement and light-cured. The specimens were stored in 37°C distilled water for 24 hours and thermocycled for 2,500 cycles. The specimens were loaded in shear on a universal testing machine. Data were analyzed with one-way and two-way ANOVAs and Tukey’s post hoc tests (α = 0.05).

Results: A significant difference in shear bond strength was found based on the surface treatment (p < 0.001), but not on the type of zirconia (p = 0.132).

Conclusion: Air abrasion with glass beads or no surface treatment resulted in significantly lower bond strength of the resin cement to all three zirconia types compared to air abrasion with aluminum oxide.

Clinical significance: Although air abrasion with aluminum oxide may reportedly be more likely to weaken cubic-containing zirconia compared to air abrasion with glass beads, the use of aluminum oxide results in greater bond strength of the resin cement.

Keywords: Bond strength, Cement, Surface treatment, Zirconia.

The Journal of Contemporary Dental Practice (2020): 10.5005/jp-journals-10024-2879

INTRODUCTION

Zirconia is a metastable material that can exist in various crystalline phases. Three types of which have been utilized for dentistry: monoclinic, tetragonal, and cubic. The first version of zirconia employed in dentistry was a form comprised of the high-strength tetragonal crystalline phase.1 At room temperature, zirconia exists in the weaker monoclinic crystalline form. However, small amounts of oxides or dopants like yttrium oxide (Y2O3) are added to stabilize it in the tetragonal crystalline form.1 Y2O3 is added to the purified zirconia powder to stabilize the tetragonal phase and prevent it from transforming to the weaker monoclinic oxide with sintering.1 Of all the restorative ceramics, Y2O3-stabilized tetragonal zirconia polycrystal (Y-TZP) is the most clinically durable.2

However, current Y-TZP tetragonal zirconia materials on the market lack the esthetics of competitive glass-ceramics and are therefore somewhat restricted to the posterior region or frameworks.2 To increase the translucency, new formulations of zirconia oxide were developed. Formulating new translucent dental zirconia materials involved increasing the Y2O3 content, which introduced the cubic phase along with the metastable tetragonal phase in the resulting zirconia oxide materials.3 The presence of specific percentages of tetragonal and cubic phases defines the mechanical and physical properties of the zirconia. Using a higher Y2O3 content produces a partially stabilized zirconia (PSZ) with greater cubic content. For example, the amount of Y2O3 dopant in molar concentration that is used in zirconia is abbreviated as 3Y-TZP for 3 mol% Y2O3, 4Y-PSZ for 4 mol% Y2O3, or 5Y-PSZ for 5 mol% Y2O3.3,4 In these new zirconia materials, the quantity of the cubic phase increases from 15% in 3Y-TZP materials to approximately 25 vol% in 4Y-PSZ materials and up to 50 vol% in 5Y-PSZ materials. This increased cubic phase improves the translucency of the zirconia materials compared to traditional 3Y-TZP zirconia materials but diminishes toughness and strength.4 3Y-TZP has a high fracture toughness from 5 to 10 MPa m½ and flexural strength of 900–1,400 MPa.3 4Y-PSZ has a fracture toughness of 2.5–3.5 MPa m½ and flexural strength of 600–900 MPa, and 5Y-PSZ has a fracture toughness of 2.2 to 4 MPa m½ and flexural strength of 700–800 MPa.4

One of the unique things about zirconia is its increased ability to resist fracture. This property is called transformation toughness. The transformation of zirconia’s metastable tetragonal phase to the monoclinic phase allows for this toughening, which increases a

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

1-4Department of General Dentistry, Advanced Education in General Dentistry Residency, Wilford Hall Ambulatory Surgical Center, Dunn Dental Clinic, San Antonio—Lackland, Texas, USA; Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA

Corresponding Author: Kraig S Vandewalle, Department of General Dentistry, Advanced Education in General Dentistry Residency, Wilford Hall Ambulatory Surgical Center, Dunn Dental Clinic, San Antonio—Lackland, Texas, USA; Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA, Phone: +210 292-0760, e-mail: kraig.s.vandewalle.civ@mail.mil

How to cite this article: Mehari K, Parke AS, Gallardo FF, et al. Assessing the Effects of Air Abrasion with Aluminum Oxide or Glass Beads to Zirconia on the Bond Strength of Cement. J Contemp Dent Pract 2020;21(7):713–717.

Source of support: 59th Medical Wing, Joint Base San Antonio, Lackland, Texas, USA

Conflict of interest: None
Effects of Zirconia Surface Treatments on Bond Strength of Cement

Zirconia restorations are considered cementable with conventional cements due to their high flexural strength, but may need to be bonded if mechanical retention is limited. Bonding to 3Y-TZP has been studied with recommendations that aluminum oxide abrasion and adhesive monomer application be utilized for more predictable long-term bonding. Concerns have been raised regarding surface damage after air-abrading 3Y-TZP with aluminum oxide particles. However, the results from a subgroup analysis demonstrated that air abrasion may actually improve the mechanical strength of 3Y-TZP compared to non-abraded specimens, irrespective of the air pressure or duration. No strength decrease was observed even after longer abrasion times. The monomer 10-methacryloyloxy-decyl dihydrogen phosphate (10-MDP) was originally designed to bond to metal oxides and its use has been extended to oxide ceramics. 10-MDP-containing resin cements or primers seem to be the most successful due to the chemical interaction between the hydroxyl groups of the passive zirconia surface and the phosphate ester group of the 10-MDP. A recent study examined the bond strength between an adhesive resin cement and cubic-containing zirconia and found it was similar to traditional tetragonal zirconia. However, the weaker cubic-containing zirconia materials may require a different bonding strategy when using air abrasion.

Cubic-containing zirconia may not undergo transformation toughening and, therefore, may be more susceptible to mechanical damage with aluminum oxide air abrasion. The surface treatment with glass beads instead of aluminum oxide has been suggested for cubic-containing zirconia and does not seem to result in a strength degradation. A recent study found that the flexural strength of esthetic cubic-containing zirconia was adversely affected by aluminum oxide air abrasion and to a less extent by glass beads. Although glass beads may be less likely to weaken the cubic-containing zirconia, it may not prepare the surface as well as aluminum oxide and therefore, it may result in lower bond strength of resin cement.

The purpose of this study was to evaluate the effects of aluminum oxide and glass bead air abrasion to 3Y-TZP, 4Y-PSZ, and 5Y-PSZ zirconia materials on the shear bond strength of a resin cement. The null hypotheses tested were that there would be no difference in shear bond strength of a resin cement based on (1) surface treatment or (2) type of zirconia.

### Materials and Methods

This original research study was conducted at the United States Air Force Postgraduate Dental School at Joint Base San Antonio (JBSA), Lackland, TX, USA. The Institutional Review Board at Wilford Hall Ambulatory Surgical Center, JBSA, Lackland, TX, USA, approved the protocol #FWH20190051N. The following materials were tested: 3Y-TZP multilayered (Katana ML, Shade 1.5-2), 4Y-PSZ super-translucent multilayered (Katana STML, Shade A2), and 5Y-PSZ ultra-translucent multilayered zirconia (Katana UTML, Shade A2, Kuraray Dental, Houston, TX, USA). Aluminum oxide particles and glass beads were used for air particle surface treatment. Ninety specimens per each of the three ceramic materials were created and subjected to three different surface treatments (aluminum oxide air abrasion, glass-bead air abrasion, or no surface treatment).

Thirty block specimens (8 × 8 × 3.5 mm) were designed and milled out of each of the zirconia materials. The blocks were designed using DS SolidWorks software (SolidWorks, Waltham, MA, USA), and the file was imported into Sum 3D, ICAM V5 milling software (i-Mes, iCore, Eiterfeld, Germany). A CAM (computer-aided manufacturing) machine (i-Mes iCore 450) was used to mill the zirconia blocks out of the zirconia blanks. After sintering the blocks in a furnace (Programat S1 1600, Ivoclar Vivadent, Amherst, NY, USA), the zirconia blocks were mounted in a plastic pipe using resin (Vitacrilic, Frickel International, Streamwood, IL, USA). The top surface of the block specimen received either air abrasion with aluminum oxide, glass beads, or no surface treatment. The blocks from the aluminum oxide group were air-abraded (Basic Quattro IS, Renfert, Chicago, IL, USA) using 50 μm aluminum oxide (Korox, BEGO, Bremen, Germany) at 2.0 bar at a distance of 10 mm for 10 seconds using a vinyl polysiloxane jig to standardize distances. Similarly, the blocks from the glass-bead group were air-abraded using 80 μm glass beads (Perlablast Micro, BEGO, Bremen, Germany) (Table 1). A control group received no surface treatment. Then, the blocks were steam cleaned (i700B, Reliable, Toronto, Ontario).

Ninety composite resin disks (Z250 3M ESPE, St Paul, MN, USA) were produced using a custom-made metal split mold (4.0 mm internal diameter and 2.0 mm thickness) positioned between two glass slabs covered with transparent polyester films. Light polymerization of the composite was performed for 40 seconds on the top surface and two diametrically opposed sides of the resin disks after removal from the mold (total of 120 seconds) using the Bluephase 20i (Ivoclar Vivadent) light-curing unit. The irradiance of the curing light was determined with a radiometer (LED Radiometer, Kerr, Orange, CA, USA) to verify the irradiance levels of at least 1,200 mW/cm². A thin layer of phosphate-based 10-MDP primer (Z-Prime Plus, Bisco, Schaumburg, IL, USA) was applied to the top surface of the zirconia block according to the manufacturer’s instructions. A dual-cure resin cement (NX3, Kerr) was used to bond to the prepared composite cylinders to the zirconia blocks. A thin layer of the mixed cement was applied and distributed to the bonding surface. A 100 g calibration weight was placed on the composite cylinders to ensure a standardized film thickness of cement. After excess cement was removed, the cement

### Table 1: Ceramic and surface treatment materials utilized in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic material</td>
<td>Katana ML, Shade 1.5-2</td>
<td>3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP)</td>
</tr>
<tr>
<td>Mechanical surface treatment</td>
<td>Katana STML, Shade A2</td>
<td>4 mol% partially stabilized zirconia (4Y-PSZ)</td>
</tr>
<tr>
<td></td>
<td>Katana UTML, Shade A2</td>
<td>5 mol% partially stabilized zirconia (5Y-PSZ)</td>
</tr>
<tr>
<td></td>
<td>Perlablast Micro</td>
<td>80 μm glass beads</td>
</tr>
</tbody>
</table>
was cured in four equidistant positions for 40 seconds each using the curing light as before.

The specimens were stored in 37°C distilled water in a lab oven (Model 20GC, Quincy Lab, Chicago, IL, USA) for 24 hours and then thermocycled in distilled water for 2,500 cycles at 5°C and 55°C with a dwell time of 30 seconds at each temperature (Sabri Dental Enterprises Inc, Downers Grove, IL, USA). The specimens were loaded perpendicularly with a blade-shaped probe in a universal testing machine (Model 5943, Instron, Norwood, MA, USA) using a crosshead speed of 1.0 mm/minute until failure. Shear bond strength values in megapascals (MPa) were calculated from the peak load of failure divided by the specimen surface area. A mean and standard deviation were determined per group. The data were submitted first to a Shapiro–Wilk test and found to be normally distributed. The data were then analyzed with a two-way ANOVA and Tukey’s post hoc test evaluating the effect of zirconia material (3 levels) or surface treatment (3 levels) on shear bond strength (α = 0.05). Additionally, the data were analyzed with multiple one-way ANOVAs per zirconia material or surface treatment.

Following testing, each shear bond strength specimen was examined using a light microscope (SMZ-1B, Nikon, Melville, NY, USA) at 10x magnification to determine failure mode as either: (1) adhesive fracture at the resin cement/zirconia interface, (2) cohesive fracture in resin cement, (3) mixed (combined adhesive and cohesive) in resin cement or zirconia, or (4) cohesive fracture in zirconia. Representative specimens from each group were imaged with a scanning electron microscope (TM 3000, Hitachi, Tarrytown, NY) at 40x magnification. Statistical analysis was performed using SPSS 25 (IBM/SPSS, Chicago, IL, USA).

Results

A significant difference in shear bond strength of the resin cement was found based on the surface treatment (p < 0.001), but not on zirconia type (p = 0.132), with no significant interaction (p = 0.98). Air abrasion with aluminum oxide created significantly greater bond strength of the resin cement to all zirconia materials compared to air abrasion with glass beads or no surface treatment. No significant difference in shear bond strength of the resin cement was found between the use of glass beads and no surface treatment (Table 2). There was no significant difference in shear bond strength between any of the three zirconia materials based on the surface treatment. More mixed failures were observed with aluminum oxide air abrasion as shown in Figure 1. Representative failure modes at 40x magnification are shown in Figure 2.

Discussion

The survival of zirconia restorations with less retentive preparations relies on, among other aspects, the durability of the bonded interfaces. Zirconia is a densely sintered material exhibiting high hardness, and thus, roughening the surface of the ceramic may be more difficult. Zirconia does not contain silica-glass particles like traditional glass-ceramics allowing an etch with hydrofluoric acid and bond with silane to the intaglio surface. Therefore, it may require additional surface treatment (e.g., air abrasion) and surface primers (e.g., 10-MDP) for less retentive preparations. Air abrasion may clean the ceramic surface, remove impurities, and increase surface roughness, bond strength, surface energy, and wettability. Air abrasion has been reported to both increase and decrease the mechanical strength of 3Y-TZP zirconia materials and to promote varied percentages of phase transformation. These contradictory findings may result from the diverse protocols used, with variation in particle size and pressure, as well as the lack of aging conditions. However, global results from a meta-analysis showed that the use of surface conditioning procedures based on the airborne-particle abrasion protocols improved the flexural strength of 3Y-TZP. The force of the particles on the 3Y-TZP surface could lead to microcracks and plastic deformation, thus decreasing the strength of the ceramic. However, small cracks, flaws, and defects that could lead to fracture appear to remain confined within the transformation layer, where they are probably healed by the 4% volume increase in the grains during the phase transformation. However, a recent study found that the flexural strength of 4Y-PSZ and 5Y-PSZ cubic-containing zirconia materials was adversely affected by aluminum oxide air abrasion and to a less extent by the use of glass beads.

In this study, air abrasion with aluminum oxide created greater bond strength of the resin cement to all zirconia materials compared to air abrasion with glass beads or no surface treatment. Therefore, the first null hypothesis was rejected. The use of the glass beads resulted in a zirconia surface that was similar in retention to no surface treatment but less retentive than the use of the aluminum oxide particles. Although glass beads may be less likely to weaken the cubic-containing zirconia as found by Cowen et al., the results of this study suggest that it may not prepare the surface as well as aluminum oxide and therefore lower the bond strength to resin cement.

Similar to this study, a recent study by Le et al. found that aluminum oxide air abrasion increased the bond strength significantly for both conventional and translucent zirconia. So, until more studies are published comparing the effect of air abrasion using aluminum oxide or glass beads on the strength of cubic-containing zirconia, the authors suggest that practitioners continue to air-abrade all types of zirconia (i.e., 3Y-TSP, 4Y-PSZ, and 5Y-PSZ) with aluminum oxide and use an adhesive monomer to increase bond strength in clinical cases with less retentive preparations. The selection of the type of zirconia to utilize clinically will depend on individual case selection. The stronger, but less aesthetic 3Y-TZP zirconia materials may be selected for posterior restorations with heavier occlusion and the weaker, but more aesthetic cubic-containing zirconia materials may be considered for more anterior restorations in the esthetic zone.

Although there were differences in cubic content and inherent strength properties of the three materials, there was not a significant difference in bond strength per surface treatment. Therefore, the second null hypothesis was not rejected. Air abrasion with aluminum oxide resulted in over twice the shear bond strength than the use of glass beads or no surface treatment—irrespective of material type. Additionally, more mixed failures were associated with aluminum oxide air abrasion compared to the use of glass.

Table 2: Shear bond strength of the resin cement to various zirconia types after surface treatments with no treatment (control), glass beads, or aluminum oxide. Groups with the same upper case letter per row or lower case letter per column are not significantly different (p > 0.05).

<table>
<thead>
<tr>
<th>Surface treatment</th>
<th>Shear bond strength MPa (Std dev)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Katana ML</td>
</tr>
<tr>
<td>Control</td>
<td>6.0 (1.5) Aa</td>
</tr>
<tr>
<td>Glass beads</td>
<td>5.9 (1.7) Aa</td>
</tr>
<tr>
<td>Al oxide</td>
<td>13.4 (3.8) Ab</td>
</tr>
</tbody>
</table>
Effects of Zirconia Surface Treatments on Bond Strength of Cement

The Journal of Contemporary Dental Practice, Volume 21 Issue 7 (July 2020)

beads. Mixed failure modes are often associated with higher bond strength compared to purely adhesive-type failures, as was seen more readily with the use of glass beads and even more evident in the untreated control group.21

Limitations to this study include the use of only one type of cement and adhesive primer. Additionally, the effect of various sizes of aluminum oxide particles and glass beads should be investigated along with different levels of air pressure. Future clinical studies should examine the effects of air abrasion using aluminum oxide or glass beads on the intra-oral success of cubic-containing zirconia.

CONCLUSION
Air abrasion with glass beads or no surface treatment resulted in significantly lower bond strength of the resin cement to all three zirconia types compared to air abrasion with aluminum oxide.

DISCLAIMER
The views expressed are those of the authors and do not reflect the official views or policy of the Uniformed Services University, Department of Defense, or its Components. The authors do not have any financial interest in the companies whose materials are discussed in this abstract.

REFERENCES